L(s) = 1 | + (−1.62 + 1.93i)2-s + (−1.32 + 1.11i)3-s + (−0.766 − 4.34i)4-s − 4.38i·6-s + (−3.01 − 0.532i)7-s + (5.28 + 3.05i)8-s + (0.520 − 2.95i)9-s + (−5.29 + 1.92i)11-s + (5.85 + 4.91i)12-s + (−2.71 − 3.23i)13-s + (5.94 − 4.98i)14-s + (−6.23 + 2.27i)16-s + (−1.43 + 0.826i)17-s + (4.88 + 5.81i)18-s + (0.120 − 0.208i)19-s + ⋯ |
L(s) = 1 | + (−1.15 + 1.37i)2-s + (−0.766 + 0.642i)3-s + (−0.383 − 2.17i)4-s − 1.79i·6-s + (−1.14 − 0.201i)7-s + (1.86 + 1.07i)8-s + (0.173 − 0.984i)9-s + (−1.59 + 0.581i)11-s + (1.68 + 1.41i)12-s + (−0.753 − 0.898i)13-s + (1.58 − 1.33i)14-s + (−1.55 + 0.567i)16-s + (−0.347 + 0.200i)17-s + (1.15 + 1.37i)18-s + (0.0276 − 0.0479i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.229894 + 0.204223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.229894 + 0.204223i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.32 - 1.11i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.62 - 1.93i)T + (-0.347 - 1.96i)T^{2} \) |
| 7 | \( 1 + (3.01 + 0.532i)T + (6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (5.29 - 1.92i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (2.71 + 3.23i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (1.43 - 0.826i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.120 + 0.208i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-7.34 + 1.29i)T + (21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (-5.90 - 4.95i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.858 - 4.86i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (2.15 - 1.24i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.109 - 0.0918i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (0.256 + 0.705i)T + (-32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-4.58 - 0.807i)T + (44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + 12.1iT - 53T^{2} \) |
| 59 | \( 1 + (4.45 + 1.62i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-2.41 + 13.6i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-4.73 - 5.64i)T + (-11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-2.45 - 4.24i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.196 + 0.113i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.53 - 6.32i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (5.69 - 6.78i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (-3.33 + 5.76i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.26 - 8.95i)T + (-74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27723032272631887850413285168, −9.902857940611790602294225956561, −8.998094026680213380479084939593, −8.052742123561468298035017568349, −6.98221638394586577157883481173, −6.60233447607412222973853100112, −5.29598526685232637178216815050, −4.99160838798132816628786242078, −3.05328623206781612081605159449, −0.49223401117379135420759553065,
0.61989409660249548682358214669, 2.32169170507917870786312608845, 2.97443540934827751570052927838, 4.62004369653169846911691542393, 5.91622434183180780572628840674, 7.07356510508538193149882016141, 7.80039204682444795317381775109, 8.833972687829516890439232318991, 9.641474425286517455523392659099, 10.42879375843901552245798692224