L(s) = 1 | + (−1.62 − 1.93i)2-s + (−1.32 − 1.11i)3-s + (−0.766 + 4.34i)4-s + 4.38i·6-s + (−3.01 + 0.532i)7-s + (5.28 − 3.05i)8-s + (0.520 + 2.95i)9-s + (−5.29 − 1.92i)11-s + (5.85 − 4.91i)12-s + (−2.71 + 3.23i)13-s + (5.94 + 4.98i)14-s + (−6.23 − 2.27i)16-s + (−1.43 − 0.826i)17-s + (4.88 − 5.81i)18-s + (0.120 + 0.208i)19-s + ⋯ |
L(s) = 1 | + (−1.15 − 1.37i)2-s + (−0.766 − 0.642i)3-s + (−0.383 + 2.17i)4-s + 1.79i·6-s + (−1.14 + 0.201i)7-s + (1.86 − 1.07i)8-s + (0.173 + 0.984i)9-s + (−1.59 − 0.581i)11-s + (1.68 − 1.41i)12-s + (−0.753 + 0.898i)13-s + (1.58 + 1.33i)14-s + (−1.55 − 0.567i)16-s + (−0.347 − 0.200i)17-s + (1.15 − 1.37i)18-s + (0.0276 + 0.0479i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.117 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.117 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.229894 - 0.204223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.229894 - 0.204223i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.32 + 1.11i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.62 + 1.93i)T + (-0.347 + 1.96i)T^{2} \) |
| 7 | \( 1 + (3.01 - 0.532i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (5.29 + 1.92i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (2.71 - 3.23i)T + (-2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (1.43 + 0.826i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.120 - 0.208i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-7.34 - 1.29i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-5.90 + 4.95i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.858 + 4.86i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (2.15 + 1.24i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.109 + 0.0918i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (0.256 - 0.705i)T + (-32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-4.58 + 0.807i)T + (44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 - 12.1iT - 53T^{2} \) |
| 59 | \( 1 + (4.45 - 1.62i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-2.41 - 13.6i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-4.73 + 5.64i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-2.45 + 4.24i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.196 - 0.113i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.53 + 6.32i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (5.69 + 6.78i)T + (-14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (-3.33 - 5.76i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.26 + 8.95i)T + (-74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42879375843901552245798692224, −9.641474425286517455523392659099, −8.833972687829516890439232318991, −7.80039204682444795317381775109, −7.07356510508538193149882016141, −5.91622434183180780572628840674, −4.62004369653169846911691542393, −2.97443540934827751570052927838, −2.32169170507917870786312608845, −0.61989409660249548682358214669,
0.49223401117379135420759553065, 3.05328623206781612081605159449, 4.99160838798132816628786242078, 5.29598526685232637178216815050, 6.60233447607412222973853100112, 6.98221638394586577157883481173, 8.052742123561468298035017568349, 8.998094026680213380479084939593, 9.902857940611790602294225956561, 10.27723032272631887850413285168