L(s) = 1 | + 1.73i·3-s − 5.15i·5-s + (2.53 + 6.52i)7-s − 2.99·9-s − 14.9·11-s + 4.05i·13-s + 8.92·15-s − 26.1i·17-s + 10.3i·19-s + (−11.3 + 4.38i)21-s − 18.0·23-s − 1.53·25-s − 5.19i·27-s − 42.4·29-s − 3.16i·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.03i·5-s + (0.361 + 0.932i)7-s − 0.333·9-s − 1.35·11-s + 0.311i·13-s + 0.594·15-s − 1.54i·17-s + 0.542i·19-s + (−0.538 + 0.208i)21-s − 0.783·23-s − 0.0613·25-s − 0.192i·27-s − 1.46·29-s − 0.102i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.932 + 0.361i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.932 + 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.09026461038\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09026461038\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 + (-2.53 - 6.52i)T \) |
good | 5 | \( 1 + 5.15iT - 25T^{2} \) |
| 11 | \( 1 + 14.9T + 121T^{2} \) |
| 13 | \( 1 - 4.05iT - 169T^{2} \) |
| 17 | \( 1 + 26.1iT - 289T^{2} \) |
| 19 | \( 1 - 10.3iT - 361T^{2} \) |
| 23 | \( 1 + 18.0T + 529T^{2} \) |
| 29 | \( 1 + 42.4T + 841T^{2} \) |
| 31 | \( 1 + 3.16iT - 961T^{2} \) |
| 37 | \( 1 + 34.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 41.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 16.2T + 1.84e3T^{2} \) |
| 47 | \( 1 + 1.01iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 84.3T + 2.80e3T^{2} \) |
| 59 | \( 1 + 59.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 86.6iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 116.T + 4.48e3T^{2} \) |
| 71 | \( 1 + 97.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + 28.2iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 103.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 34.8iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 64.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 105. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.682393035241908231850555625538, −9.175428647695052113060326461665, −8.272092980782967017378476508563, −7.57696659018529578214954804386, −5.99431740189062791006101000826, −5.14216583617678268883563975588, −4.68538241167110484019576151568, −3.16389712020790169813941559568, −1.93802776474140494843230399200, −0.03001314571861373213040568425,
1.77027858922916614606521421374, 2.95880855787517036938349015044, 4.04530372016948067254743804362, 5.41617956941981753416693575151, 6.33884691340161216542771430508, 7.38761126188508026807262708481, 7.73036744213411089075407479257, 8.775018399750164171015561644505, 10.30674024575859820643847933284, 10.54953400401195620637731188672