Properties

Label 2-669-1.1-c1-0-23
Degree $2$
Conductor $669$
Sign $-1$
Analytic cond. $5.34199$
Root an. cond. $2.31127$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.19·2-s − 3-s + 2.83·4-s + 4.39·5-s + 2.19·6-s − 2.19·7-s − 1.83·8-s + 9-s − 9.66·10-s − 6.39·11-s − 2.83·12-s + 2.39·13-s + 4.83·14-s − 4.39·15-s − 1.63·16-s − 5.30·17-s − 2.19·18-s − 3.63·19-s + 12.4·20-s + 2.19·21-s + 14.0·22-s − 2.72·23-s + 1.83·24-s + 14.3·25-s − 5.27·26-s − 27-s − 6.23·28-s + ⋯
L(s)  = 1  − 1.55·2-s − 0.577·3-s + 1.41·4-s + 1.96·5-s + 0.897·6-s − 0.831·7-s − 0.648·8-s + 0.333·9-s − 3.05·10-s − 1.92·11-s − 0.818·12-s + 0.664·13-s + 1.29·14-s − 1.13·15-s − 0.408·16-s − 1.28·17-s − 0.518·18-s − 0.834·19-s + 2.78·20-s + 0.479·21-s + 2.99·22-s − 0.569·23-s + 0.374·24-s + 2.86·25-s − 1.03·26-s − 0.192·27-s − 1.17·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(669\)    =    \(3 \cdot 223\)
Sign: $-1$
Analytic conductor: \(5.34199\)
Root analytic conductor: \(2.31127\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 669,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
223 \( 1 + T \)
good2 \( 1 + 2.19T + 2T^{2} \)
5 \( 1 - 4.39T + 5T^{2} \)
7 \( 1 + 2.19T + 7T^{2} \)
11 \( 1 + 6.39T + 11T^{2} \)
13 \( 1 - 2.39T + 13T^{2} \)
17 \( 1 + 5.30T + 17T^{2} \)
19 \( 1 + 3.63T + 19T^{2} \)
23 \( 1 + 2.72T + 23T^{2} \)
29 \( 1 + 8.50T + 29T^{2} \)
31 \( 1 - 2.43T + 31T^{2} \)
37 \( 1 - 5.86T + 37T^{2} \)
41 \( 1 + 2.13T + 41T^{2} \)
43 \( 1 + 3.23T + 43T^{2} \)
47 \( 1 - 6.97T + 47T^{2} \)
53 \( 1 + 10.0T + 53T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 + 8.46T + 61T^{2} \)
67 \( 1 - 2.93T + 67T^{2} \)
71 \( 1 - 8.13T + 71T^{2} \)
73 \( 1 + 4.50T + 73T^{2} \)
79 \( 1 + 5.73T + 79T^{2} \)
83 \( 1 - 1.56T + 83T^{2} \)
89 \( 1 + 6.26T + 89T^{2} \)
97 \( 1 - 7.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00036664804580760301742020540, −9.402118405239445677020710122364, −8.641465242069553565857388574395, −7.54752468402610472570386863083, −6.39680698516796503761026311742, −6.03309949897770037017741697412, −4.85794872282175382602410703088, −2.62961758106967159577114479873, −1.79741049297650950261876984611, 0, 1.79741049297650950261876984611, 2.62961758106967159577114479873, 4.85794872282175382602410703088, 6.03309949897770037017741697412, 6.39680698516796503761026311742, 7.54752468402610472570386863083, 8.641465242069553565857388574395, 9.402118405239445677020710122364, 10.00036664804580760301742020540

Graph of the $Z$-function along the critical line