Properties

Label 2-6660-1.1-c1-0-45
Degree $2$
Conductor $6660$
Sign $-1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2.33·7-s − 6.01·11-s + 2.44·13-s − 0.800·17-s + 0.800·19-s + 2.81·23-s + 25-s − 1.09·29-s − 7.48·31-s − 2.33·35-s − 37-s + 9.97·41-s + 2.90·43-s + 13.1·47-s − 1.54·49-s − 11.9·53-s + 6.01·55-s − 13.0·59-s − 5.21·61-s − 2.44·65-s − 3.47·67-s + 9.90·71-s + 0.948·73-s − 14.0·77-s − 5.40·79-s + 5.46·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.882·7-s − 1.81·11-s + 0.676·13-s − 0.194·17-s + 0.183·19-s + 0.587·23-s + 0.200·25-s − 0.203·29-s − 1.34·31-s − 0.394·35-s − 0.164·37-s + 1.55·41-s + 0.443·43-s + 1.91·47-s − 0.220·49-s − 1.63·53-s + 0.811·55-s − 1.70·59-s − 0.667·61-s − 0.302·65-s − 0.424·67-s + 1.17·71-s + 0.111·73-s − 1.60·77-s − 0.608·79-s + 0.599·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good7 \( 1 - 2.33T + 7T^{2} \)
11 \( 1 + 6.01T + 11T^{2} \)
13 \( 1 - 2.44T + 13T^{2} \)
17 \( 1 + 0.800T + 17T^{2} \)
19 \( 1 - 0.800T + 19T^{2} \)
23 \( 1 - 2.81T + 23T^{2} \)
29 \( 1 + 1.09T + 29T^{2} \)
31 \( 1 + 7.48T + 31T^{2} \)
41 \( 1 - 9.97T + 41T^{2} \)
43 \( 1 - 2.90T + 43T^{2} \)
47 \( 1 - 13.1T + 47T^{2} \)
53 \( 1 + 11.9T + 53T^{2} \)
59 \( 1 + 13.0T + 59T^{2} \)
61 \( 1 + 5.21T + 61T^{2} \)
67 \( 1 + 3.47T + 67T^{2} \)
71 \( 1 - 9.90T + 71T^{2} \)
73 \( 1 - 0.948T + 73T^{2} \)
79 \( 1 + 5.40T + 79T^{2} \)
83 \( 1 - 5.46T + 83T^{2} \)
89 \( 1 + 9.59T + 89T^{2} \)
97 \( 1 + 8.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68836711581303228983847006370, −7.23505023143023552156780677486, −6.09354665957523066613936613421, −5.43701475620680838839554039601, −4.82170835437489998225101257144, −4.07902091519910148099207061870, −3.11491108742672552727741721432, −2.35136708588951231259668504209, −1.29109764722590564755194409368, 0, 1.29109764722590564755194409368, 2.35136708588951231259668504209, 3.11491108742672552727741721432, 4.07902091519910148099207061870, 4.82170835437489998225101257144, 5.43701475620680838839554039601, 6.09354665957523066613936613421, 7.23505023143023552156780677486, 7.68836711581303228983847006370

Graph of the $Z$-function along the critical line