Properties

Label 6660.2.a.s.1.3
Level $6660$
Weight $2$
Character 6660.1
Self dual yes
Analytic conductor $53.180$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6660,2,Mod(1,6660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6660, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6660.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6660 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6660.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,4,0,0,0,-5,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.1803677462\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.39605.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 8x^{2} + 9x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2220)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.57685\) of defining polynomial
Character \(\chi\) \(=\) 6660.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +2.33529 q^{7} -6.01770 q^{11} +2.44085 q^{13} -0.800705 q^{17} +0.800705 q^{19} +2.81840 q^{23} +1.00000 q^{25} -1.09374 q^{29} -7.48899 q^{31} -2.33529 q^{35} -1.00000 q^{37} +9.97210 q^{41} +2.90626 q^{43} +13.1468 q^{47} -1.54640 q^{49} -11.9298 q^{53} +6.01770 q^{55} -13.0658 q^{59} -5.21699 q^{61} -2.44085 q^{65} -3.47129 q^{67} +9.90527 q^{71} +0.948519 q^{73} -14.0531 q^{77} -5.40800 q^{79} +5.46443 q^{83} +0.800705 q^{85} -9.59454 q^{89} +5.70010 q^{91} -0.800705 q^{95} -8.41981 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 4 q^{7} - 5 q^{11} + 3 q^{13} - 3 q^{17} + 3 q^{19} - 8 q^{23} + 4 q^{25} - 6 q^{29} - 4 q^{35} - 4 q^{37} - 4 q^{41} + 10 q^{43} - 3 q^{47} + 2 q^{49} - 11 q^{53} + 5 q^{55} - 10 q^{59}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.33529 0.882658 0.441329 0.897345i \(-0.354507\pi\)
0.441329 + 0.897345i \(0.354507\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.01770 −1.81440 −0.907202 0.420696i \(-0.861786\pi\)
−0.907202 + 0.420696i \(0.861786\pi\)
\(12\) 0 0
\(13\) 2.44085 0.676970 0.338485 0.940972i \(-0.390086\pi\)
0.338485 + 0.940972i \(0.390086\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.800705 −0.194200 −0.0970998 0.995275i \(-0.530957\pi\)
−0.0970998 + 0.995275i \(0.530957\pi\)
\(18\) 0 0
\(19\) 0.800705 0.183694 0.0918472 0.995773i \(-0.470723\pi\)
0.0918472 + 0.995773i \(0.470723\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.81840 0.587677 0.293839 0.955855i \(-0.405067\pi\)
0.293839 + 0.955855i \(0.405067\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.09374 −0.203102 −0.101551 0.994830i \(-0.532381\pi\)
−0.101551 + 0.994830i \(0.532381\pi\)
\(30\) 0 0
\(31\) −7.48899 −1.34506 −0.672531 0.740069i \(-0.734793\pi\)
−0.672531 + 0.740069i \(0.734793\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.33529 −0.394737
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.97210 1.55738 0.778690 0.627409i \(-0.215885\pi\)
0.778690 + 0.627409i \(0.215885\pi\)
\(42\) 0 0
\(43\) 2.90626 0.443200 0.221600 0.975138i \(-0.428872\pi\)
0.221600 + 0.975138i \(0.428872\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.1468 1.91766 0.958831 0.283977i \(-0.0916541\pi\)
0.958831 + 0.283977i \(0.0916541\pi\)
\(48\) 0 0
\(49\) −1.54640 −0.220915
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.9298 −1.63869 −0.819345 0.573301i \(-0.805662\pi\)
−0.819345 + 0.573301i \(0.805662\pi\)
\(54\) 0 0
\(55\) 6.01770 0.811426
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.0658 −1.70103 −0.850513 0.525953i \(-0.823709\pi\)
−0.850513 + 0.525953i \(0.823709\pi\)
\(60\) 0 0
\(61\) −5.21699 −0.667967 −0.333984 0.942579i \(-0.608393\pi\)
−0.333984 + 0.942579i \(0.608393\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.44085 −0.302750
\(66\) 0 0
\(67\) −3.47129 −0.424086 −0.212043 0.977260i \(-0.568012\pi\)
−0.212043 + 0.977260i \(0.568012\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.90527 1.17554 0.587770 0.809028i \(-0.300006\pi\)
0.587770 + 0.809028i \(0.300006\pi\)
\(72\) 0 0
\(73\) 0.948519 0.111016 0.0555079 0.998458i \(-0.482322\pi\)
0.0555079 + 0.998458i \(0.482322\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −14.0531 −1.60150
\(78\) 0 0
\(79\) −5.40800 −0.608447 −0.304224 0.952601i \(-0.598397\pi\)
−0.304224 + 0.952601i \(0.598397\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.46443 0.599799 0.299899 0.953971i \(-0.403047\pi\)
0.299899 + 0.953971i \(0.403047\pi\)
\(84\) 0 0
\(85\) 0.800705 0.0868487
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.59454 −1.01702 −0.508510 0.861056i \(-0.669803\pi\)
−0.508510 + 0.861056i \(0.669803\pi\)
\(90\) 0 0
\(91\) 5.70010 0.597533
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.800705 −0.0821506
\(96\) 0 0
\(97\) −8.41981 −0.854902 −0.427451 0.904038i \(-0.640588\pi\)
−0.427451 + 0.904038i \(0.640588\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −17.6687 −1.75810 −0.879049 0.476731i \(-0.841821\pi\)
−0.879049 + 0.476731i \(0.841821\pi\)
\(102\) 0 0
\(103\) 19.1468 1.88659 0.943296 0.331951i \(-0.107707\pi\)
0.943296 + 0.331951i \(0.107707\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.10555 −0.203552 −0.101776 0.994807i \(-0.532452\pi\)
−0.101776 + 0.994807i \(0.532452\pi\)
\(108\) 0 0
\(109\) −16.1164 −1.54367 −0.771835 0.635823i \(-0.780661\pi\)
−0.771835 + 0.635823i \(0.780661\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.58371 −0.148983 −0.0744917 0.997222i \(-0.523733\pi\)
−0.0744917 + 0.997222i \(0.523733\pi\)
\(114\) 0 0
\(115\) −2.81840 −0.262817
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.86988 −0.171412
\(120\) 0 0
\(121\) 25.2127 2.29206
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.47717 0.574756 0.287378 0.957817i \(-0.407216\pi\)
0.287378 + 0.957817i \(0.407216\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.6427 −1.62882 −0.814409 0.580291i \(-0.802939\pi\)
−0.814409 + 0.580291i \(0.802939\pi\)
\(132\) 0 0
\(133\) 1.86988 0.162139
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.4703 1.57802 0.789012 0.614377i \(-0.210593\pi\)
0.789012 + 0.614377i \(0.210593\pi\)
\(138\) 0 0
\(139\) −8.73054 −0.740515 −0.370257 0.928929i \(-0.620731\pi\)
−0.370257 + 0.928929i \(0.620731\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.6883 −1.22830
\(144\) 0 0
\(145\) 1.09374 0.0908302
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.97210 0.816946 0.408473 0.912770i \(-0.366061\pi\)
0.408473 + 0.912770i \(0.366061\pi\)
\(150\) 0 0
\(151\) −23.5808 −1.91898 −0.959490 0.281744i \(-0.909087\pi\)
−0.959490 + 0.281744i \(0.909087\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.48899 0.601530
\(156\) 0 0
\(157\) −14.8184 −1.18264 −0.591319 0.806438i \(-0.701392\pi\)
−0.591319 + 0.806438i \(0.701392\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.58179 0.518718
\(162\) 0 0
\(163\) 10.2465 0.802568 0.401284 0.915954i \(-0.368564\pi\)
0.401284 + 0.915954i \(0.368564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.5759 −0.973149 −0.486575 0.873639i \(-0.661754\pi\)
−0.486575 + 0.873639i \(0.661754\pi\)
\(168\) 0 0
\(169\) −7.04226 −0.541712
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.4188 1.02021 0.510107 0.860111i \(-0.329606\pi\)
0.510107 + 0.860111i \(0.329606\pi\)
\(174\) 0 0
\(175\) 2.33529 0.176532
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.8665 −0.886947 −0.443473 0.896287i \(-0.646254\pi\)
−0.443473 + 0.896287i \(0.646254\pi\)
\(180\) 0 0
\(181\) 5.06584 0.376541 0.188270 0.982117i \(-0.439712\pi\)
0.188270 + 0.982117i \(0.439712\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 4.81840 0.352356
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.1891 −1.24376 −0.621879 0.783113i \(-0.713631\pi\)
−0.621879 + 0.783113i \(0.713631\pi\)
\(192\) 0 0
\(193\) −12.1409 −0.873924 −0.436962 0.899480i \(-0.643946\pi\)
−0.436962 + 0.899480i \(0.643946\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.81840 −0.200803 −0.100401 0.994947i \(-0.532013\pi\)
−0.100401 + 0.994947i \(0.532013\pi\)
\(198\) 0 0
\(199\) 5.76099 0.408386 0.204193 0.978931i \(-0.434543\pi\)
0.204193 + 0.978931i \(0.434543\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.55420 −0.179270
\(204\) 0 0
\(205\) −9.97210 −0.696481
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.81840 −0.333296
\(210\) 0 0
\(211\) −7.03044 −0.483996 −0.241998 0.970277i \(-0.577803\pi\)
−0.241998 + 0.970277i \(0.577803\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.90626 −0.198205
\(216\) 0 0
\(217\) −17.4890 −1.18723
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.95440 −0.131467
\(222\) 0 0
\(223\) −4.98038 −0.333511 −0.166756 0.985998i \(-0.553329\pi\)
−0.166756 + 0.985998i \(0.553329\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.6451 −0.839284 −0.419642 0.907690i \(-0.637844\pi\)
−0.419642 + 0.907690i \(0.637844\pi\)
\(228\) 0 0
\(229\) 16.1763 1.06896 0.534481 0.845180i \(-0.320507\pi\)
0.534481 + 0.845180i \(0.320507\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.85219 −0.383389 −0.191695 0.981455i \(-0.561398\pi\)
−0.191695 + 0.981455i \(0.561398\pi\)
\(234\) 0 0
\(235\) −13.1468 −0.857604
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.7400 1.27687 0.638436 0.769675i \(-0.279582\pi\)
0.638436 + 0.769675i \(0.279582\pi\)
\(240\) 0 0
\(241\) −8.94852 −0.576425 −0.288212 0.957567i \(-0.593061\pi\)
−0.288212 + 0.957567i \(0.593061\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.54640 0.0987961
\(246\) 0 0
\(247\) 1.95440 0.124356
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.8858 1.69702 0.848510 0.529180i \(-0.177500\pi\)
0.848510 + 0.529180i \(0.177500\pi\)
\(252\) 0 0
\(253\) −16.9603 −1.06628
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.91901 0.244461 0.122231 0.992502i \(-0.460995\pi\)
0.122231 + 0.992502i \(0.460995\pi\)
\(258\) 0 0
\(259\) −2.33529 −0.145108
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26.2828 −1.62067 −0.810334 0.585968i \(-0.800714\pi\)
−0.810334 + 0.585968i \(0.800714\pi\)
\(264\) 0 0
\(265\) 11.9298 0.732844
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.1140 −0.677634 −0.338817 0.940852i \(-0.610027\pi\)
−0.338817 + 0.940852i \(0.610027\pi\)
\(270\) 0 0
\(271\) −19.8269 −1.20440 −0.602198 0.798346i \(-0.705708\pi\)
−0.602198 + 0.798346i \(0.705708\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.01770 −0.362881
\(276\) 0 0
\(277\) −7.46777 −0.448695 −0.224347 0.974509i \(-0.572025\pi\)
−0.224347 + 0.974509i \(0.572025\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.60048 −0.334096 −0.167048 0.985949i \(-0.553424\pi\)
−0.167048 + 0.985949i \(0.553424\pi\)
\(282\) 0 0
\(283\) 26.1281 1.55316 0.776579 0.630020i \(-0.216954\pi\)
0.776579 + 0.630020i \(0.216954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.2878 1.37463
\(288\) 0 0
\(289\) −16.3589 −0.962287
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.9921 −1.46006 −0.730028 0.683417i \(-0.760493\pi\)
−0.730028 + 0.683417i \(0.760493\pi\)
\(294\) 0 0
\(295\) 13.0658 0.760722
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.87929 0.397840
\(300\) 0 0
\(301\) 6.78697 0.391194
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.21699 0.298724
\(306\) 0 0
\(307\) 19.1612 1.09359 0.546793 0.837268i \(-0.315848\pi\)
0.546793 + 0.837268i \(0.315848\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0144 −0.681272 −0.340636 0.940195i \(-0.610642\pi\)
−0.340636 + 0.940195i \(0.610642\pi\)
\(312\) 0 0
\(313\) 4.03633 0.228147 0.114073 0.993472i \(-0.463610\pi\)
0.114073 + 0.993472i \(0.463610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.2439 1.02468 0.512340 0.858783i \(-0.328779\pi\)
0.512340 + 0.858783i \(0.328779\pi\)
\(318\) 0 0
\(319\) 6.58179 0.368510
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.641129 −0.0356734
\(324\) 0 0
\(325\) 2.44085 0.135394
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 30.7017 1.69264
\(330\) 0 0
\(331\) 12.9560 0.712127 0.356063 0.934462i \(-0.384119\pi\)
0.356063 + 0.934462i \(0.384119\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.47129 0.189657
\(336\) 0 0
\(337\) 21.6207 1.17775 0.588876 0.808223i \(-0.299571\pi\)
0.588876 + 0.808223i \(0.299571\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 45.0665 2.44049
\(342\) 0 0
\(343\) −19.9584 −1.07765
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.8613 1.65672 0.828360 0.560196i \(-0.189274\pi\)
0.828360 + 0.560196i \(0.189274\pi\)
\(348\) 0 0
\(349\) −27.5631 −1.47542 −0.737710 0.675118i \(-0.764093\pi\)
−0.737710 + 0.675118i \(0.764093\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.6073 −0.777468 −0.388734 0.921350i \(-0.627087\pi\)
−0.388734 + 0.921350i \(0.627087\pi\)
\(354\) 0 0
\(355\) −9.90527 −0.525717
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0142 0.845196 0.422598 0.906317i \(-0.361118\pi\)
0.422598 + 0.906317i \(0.361118\pi\)
\(360\) 0 0
\(361\) −18.3589 −0.966256
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.948519 −0.0496478
\(366\) 0 0
\(367\) −12.8125 −0.668805 −0.334403 0.942430i \(-0.608535\pi\)
−0.334403 + 0.942430i \(0.608535\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −27.8597 −1.44640
\(372\) 0 0
\(373\) −16.4139 −0.849878 −0.424939 0.905222i \(-0.639705\pi\)
−0.424939 + 0.905222i \(0.639705\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.66965 −0.137494
\(378\) 0 0
\(379\) −13.1528 −0.675612 −0.337806 0.941216i \(-0.609685\pi\)
−0.337806 + 0.941216i \(0.609685\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −29.1832 −1.49119 −0.745595 0.666400i \(-0.767834\pi\)
−0.745595 + 0.666400i \(0.767834\pi\)
\(384\) 0 0
\(385\) 14.0531 0.716212
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.13266 −0.158832 −0.0794160 0.996842i \(-0.525306\pi\)
−0.0794160 + 0.996842i \(0.525306\pi\)
\(390\) 0 0
\(391\) −2.25671 −0.114127
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.40800 0.272106
\(396\) 0 0
\(397\) −10.1124 −0.507528 −0.253764 0.967266i \(-0.581669\pi\)
−0.253764 + 0.967266i \(0.581669\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.8607 1.04173 0.520866 0.853639i \(-0.325609\pi\)
0.520866 + 0.853639i \(0.325609\pi\)
\(402\) 0 0
\(403\) −18.2795 −0.910566
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.01770 0.298286
\(408\) 0 0
\(409\) −16.1536 −0.798746 −0.399373 0.916788i \(-0.630772\pi\)
−0.399373 + 0.916788i \(0.630772\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −30.5126 −1.50143
\(414\) 0 0
\(415\) −5.46443 −0.268238
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.98824 0.0971318 0.0485659 0.998820i \(-0.484535\pi\)
0.0485659 + 0.998820i \(0.484535\pi\)
\(420\) 0 0
\(421\) −3.80503 −0.185446 −0.0927230 0.995692i \(-0.529557\pi\)
−0.0927230 + 0.995692i \(0.529557\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.800705 −0.0388399
\(426\) 0 0
\(427\) −12.1832 −0.589587
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.5539 −0.990046 −0.495023 0.868880i \(-0.664840\pi\)
−0.495023 + 0.868880i \(0.664840\pi\)
\(432\) 0 0
\(433\) −6.48663 −0.311728 −0.155864 0.987779i \(-0.549816\pi\)
−0.155864 + 0.987779i \(0.549816\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.25671 0.107953
\(438\) 0 0
\(439\) 16.3074 0.778309 0.389155 0.921172i \(-0.372767\pi\)
0.389155 + 0.921172i \(0.372767\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.25337 −0.297106 −0.148553 0.988904i \(-0.547462\pi\)
−0.148553 + 0.988904i \(0.547462\pi\)
\(444\) 0 0
\(445\) 9.59454 0.454825
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.3368 −1.33730 −0.668649 0.743578i \(-0.733127\pi\)
−0.668649 + 0.743578i \(0.733127\pi\)
\(450\) 0 0
\(451\) −60.0090 −2.82572
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.70010 −0.267225
\(456\) 0 0
\(457\) −23.3438 −1.09198 −0.545988 0.837793i \(-0.683845\pi\)
−0.545988 + 0.837793i \(0.683845\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.7903 0.968301 0.484151 0.874985i \(-0.339129\pi\)
0.484151 + 0.874985i \(0.339129\pi\)
\(462\) 0 0
\(463\) −7.25925 −0.337366 −0.168683 0.985670i \(-0.553951\pi\)
−0.168683 + 0.985670i \(0.553951\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −28.4280 −1.31549 −0.657747 0.753239i \(-0.728490\pi\)
−0.657747 + 0.753239i \(0.728490\pi\)
\(468\) 0 0
\(469\) −8.10649 −0.374323
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −17.4890 −0.804145
\(474\) 0 0
\(475\) 0.800705 0.0367389
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 32.4999 1.48496 0.742478 0.669870i \(-0.233650\pi\)
0.742478 + 0.669870i \(0.233650\pi\)
\(480\) 0 0
\(481\) −2.44085 −0.111293
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.41981 0.382324
\(486\) 0 0
\(487\) 11.5910 0.525239 0.262620 0.964899i \(-0.415414\pi\)
0.262620 + 0.964899i \(0.415414\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.0751 −0.454681 −0.227341 0.973815i \(-0.573003\pi\)
−0.227341 + 0.973815i \(0.573003\pi\)
\(492\) 0 0
\(493\) 0.875763 0.0394424
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.1317 1.03760
\(498\) 0 0
\(499\) 16.4340 0.735686 0.367843 0.929888i \(-0.380096\pi\)
0.367843 + 0.929888i \(0.380096\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −28.0590 −1.25109 −0.625545 0.780188i \(-0.715123\pi\)
−0.625545 + 0.780188i \(0.715123\pi\)
\(504\) 0 0
\(505\) 17.6687 0.786245
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.4595 0.463608 0.231804 0.972762i \(-0.425537\pi\)
0.231804 + 0.972762i \(0.425537\pi\)
\(510\) 0 0
\(511\) 2.21507 0.0979890
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19.1468 −0.843710
\(516\) 0 0
\(517\) −79.1136 −3.47941
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.4847 −1.24794 −0.623968 0.781450i \(-0.714480\pi\)
−0.623968 + 0.781450i \(0.714480\pi\)
\(522\) 0 0
\(523\) 3.26964 0.142972 0.0714858 0.997442i \(-0.477226\pi\)
0.0714858 + 0.997442i \(0.477226\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.99647 0.261210
\(528\) 0 0
\(529\) −15.0566 −0.654635
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.3404 1.05430
\(534\) 0 0
\(535\) 2.10555 0.0910311
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.30578 0.400828
\(540\) 0 0
\(541\) −30.6848 −1.31924 −0.659620 0.751599i \(-0.729283\pi\)
−0.659620 + 0.751599i \(0.729283\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.1164 0.690350
\(546\) 0 0
\(547\) 33.4047 1.42828 0.714140 0.700003i \(-0.246818\pi\)
0.714140 + 0.700003i \(0.246818\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.875763 −0.0373088
\(552\) 0 0
\(553\) −12.6293 −0.537051
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.3334 −0.988667 −0.494333 0.869272i \(-0.664588\pi\)
−0.494333 + 0.869272i \(0.664588\pi\)
\(558\) 0 0
\(559\) 7.09374 0.300033
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.7633 0.622201 0.311100 0.950377i \(-0.399302\pi\)
0.311100 + 0.950377i \(0.399302\pi\)
\(564\) 0 0
\(565\) 1.58371 0.0666274
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.6521 0.991547 0.495774 0.868452i \(-0.334885\pi\)
0.495774 + 0.868452i \(0.334885\pi\)
\(570\) 0 0
\(571\) 13.2288 0.553606 0.276803 0.960927i \(-0.410725\pi\)
0.276803 + 0.960927i \(0.410725\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.81840 0.117535
\(576\) 0 0
\(577\) −5.89351 −0.245350 −0.122675 0.992447i \(-0.539147\pi\)
−0.122675 + 0.992447i \(0.539147\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.7610 0.529417
\(582\) 0 0
\(583\) 71.7901 2.97324
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.9230 −0.574662 −0.287331 0.957831i \(-0.592768\pi\)
−0.287331 + 0.957831i \(0.592768\pi\)
\(588\) 0 0
\(589\) −5.99647 −0.247080
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.22626 −0.378877 −0.189439 0.981893i \(-0.560667\pi\)
−0.189439 + 0.981893i \(0.560667\pi\)
\(594\) 0 0
\(595\) 1.86988 0.0766577
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.6848 1.17203 0.586014 0.810301i \(-0.300696\pi\)
0.586014 + 0.810301i \(0.300696\pi\)
\(600\) 0 0
\(601\) −29.3555 −1.19744 −0.598719 0.800960i \(-0.704323\pi\)
−0.598719 + 0.800960i \(0.704323\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −25.2127 −1.02504
\(606\) 0 0
\(607\) −19.0530 −0.773339 −0.386669 0.922218i \(-0.626375\pi\)
−0.386669 + 0.922218i \(0.626375\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 32.0894 1.29820
\(612\) 0 0
\(613\) 13.6840 0.552690 0.276345 0.961059i \(-0.410877\pi\)
0.276345 + 0.961059i \(0.410877\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.98230 0.160322 0.0801608 0.996782i \(-0.474457\pi\)
0.0801608 + 0.996782i \(0.474457\pi\)
\(618\) 0 0
\(619\) 39.8813 1.60297 0.801483 0.598018i \(-0.204045\pi\)
0.801483 + 0.598018i \(0.204045\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.4061 −0.897681
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.800705 0.0319262
\(630\) 0 0
\(631\) −46.2693 −1.84195 −0.920975 0.389621i \(-0.872606\pi\)
−0.920975 + 0.389621i \(0.872606\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.47717 −0.257039
\(636\) 0 0
\(637\) −3.77454 −0.149553
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 44.0122 1.73838 0.869189 0.494481i \(-0.164642\pi\)
0.869189 + 0.494481i \(0.164642\pi\)
\(642\) 0 0
\(643\) −39.4016 −1.55385 −0.776923 0.629596i \(-0.783221\pi\)
−0.776923 + 0.629596i \(0.783221\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.45600 −0.371754 −0.185877 0.982573i \(-0.559513\pi\)
−0.185877 + 0.982573i \(0.559513\pi\)
\(648\) 0 0
\(649\) 78.6262 3.08635
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.4174 −0.720729 −0.360364 0.932812i \(-0.617348\pi\)
−0.360364 + 0.932812i \(0.617348\pi\)
\(654\) 0 0
\(655\) 18.6427 0.728430
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.1695 1.40896 0.704481 0.709723i \(-0.251180\pi\)
0.704481 + 0.709723i \(0.251180\pi\)
\(660\) 0 0
\(661\) −31.8621 −1.23929 −0.619646 0.784882i \(-0.712724\pi\)
−0.619646 + 0.784882i \(0.712724\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.86988 −0.0725109
\(666\) 0 0
\(667\) −3.08260 −0.119359
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 31.3943 1.21196
\(672\) 0 0
\(673\) 18.3954 0.709092 0.354546 0.935039i \(-0.384635\pi\)
0.354546 + 0.935039i \(0.384635\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.2019 0.584256 0.292128 0.956379i \(-0.405637\pi\)
0.292128 + 0.956379i \(0.405637\pi\)
\(678\) 0 0
\(679\) −19.6627 −0.754586
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.6435 −0.445526 −0.222763 0.974873i \(-0.571508\pi\)
−0.222763 + 0.974873i \(0.571508\pi\)
\(684\) 0 0
\(685\) −18.4703 −0.705714
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −29.1189 −1.10934
\(690\) 0 0
\(691\) −13.3107 −0.506362 −0.253181 0.967419i \(-0.581477\pi\)
−0.253181 + 0.967419i \(0.581477\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.73054 0.331168
\(696\) 0 0
\(697\) −7.98471 −0.302442
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.8623 1.12788 0.563941 0.825815i \(-0.309284\pi\)
0.563941 + 0.825815i \(0.309284\pi\)
\(702\) 0 0
\(703\) −0.800705 −0.0301992
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −41.2615 −1.55180
\(708\) 0 0
\(709\) 2.41703 0.0907736 0.0453868 0.998969i \(-0.485548\pi\)
0.0453868 + 0.998969i \(0.485548\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.1070 −0.790462
\(714\) 0 0
\(715\) 14.6883 0.549311
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.56806 −0.244947 −0.122474 0.992472i \(-0.539083\pi\)
−0.122474 + 0.992472i \(0.539083\pi\)
\(720\) 0 0
\(721\) 44.7135 1.66522
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.09374 −0.0406205
\(726\) 0 0
\(727\) −40.0048 −1.48369 −0.741847 0.670569i \(-0.766050\pi\)
−0.741847 + 0.670569i \(0.766050\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.32706 −0.0860693
\(732\) 0 0
\(733\) −42.0783 −1.55420 −0.777098 0.629379i \(-0.783309\pi\)
−0.777098 + 0.629379i \(0.783309\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.8892 0.769463
\(738\) 0 0
\(739\) −8.89958 −0.327376 −0.163688 0.986512i \(-0.552339\pi\)
−0.163688 + 0.986512i \(0.552339\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.1562 −0.372593 −0.186297 0.982494i \(-0.559649\pi\)
−0.186297 + 0.982494i \(0.559649\pi\)
\(744\) 0 0
\(745\) −9.97210 −0.365349
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.91709 −0.179667
\(750\) 0 0
\(751\) 0.549930 0.0200672 0.0100336 0.999950i \(-0.496806\pi\)
0.0100336 + 0.999950i \(0.496806\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23.5808 0.858194
\(756\) 0 0
\(757\) −9.65147 −0.350789 −0.175394 0.984498i \(-0.556120\pi\)
−0.175394 + 0.984498i \(0.556120\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.39463 0.0868052 0.0434026 0.999058i \(-0.486180\pi\)
0.0434026 + 0.999058i \(0.486180\pi\)
\(762\) 0 0
\(763\) −37.6365 −1.36253
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31.8917 −1.15154
\(768\) 0 0
\(769\) 48.5621 1.75120 0.875598 0.483041i \(-0.160468\pi\)
0.875598 + 0.483041i \(0.160468\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.42222 0.0871211 0.0435606 0.999051i \(-0.486130\pi\)
0.0435606 + 0.999051i \(0.486130\pi\)
\(774\) 0 0
\(775\) −7.48899 −0.269012
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.98471 0.286082
\(780\) 0 0
\(781\) −59.6069 −2.13290
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.8184 0.528891
\(786\) 0 0
\(787\) 39.9312 1.42339 0.711697 0.702487i \(-0.247927\pi\)
0.711697 + 0.702487i \(0.247927\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.69844 −0.131501
\(792\) 0 0
\(793\) −12.7339 −0.452193
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 42.1628 1.49348 0.746741 0.665115i \(-0.231617\pi\)
0.746741 + 0.665115i \(0.231617\pi\)
\(798\) 0 0
\(799\) −10.5267 −0.372409
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.70790 −0.201427
\(804\) 0 0
\(805\) −6.58179 −0.231978
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.1822 1.06115 0.530574 0.847638i \(-0.321976\pi\)
0.530574 + 0.847638i \(0.321976\pi\)
\(810\) 0 0
\(811\) 42.2952 1.48519 0.742593 0.669743i \(-0.233596\pi\)
0.742593 + 0.669743i \(0.233596\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.2465 −0.358919
\(816\) 0 0
\(817\) 2.32706 0.0814134
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.7826 −0.760220 −0.380110 0.924941i \(-0.624114\pi\)
−0.380110 + 0.924941i \(0.624114\pi\)
\(822\) 0 0
\(823\) 51.3746 1.79081 0.895403 0.445257i \(-0.146888\pi\)
0.895403 + 0.445257i \(0.146888\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23.4960 −0.817037 −0.408519 0.912750i \(-0.633955\pi\)
−0.408519 + 0.912750i \(0.633955\pi\)
\(828\) 0 0
\(829\) 14.0235 0.487057 0.243529 0.969894i \(-0.421695\pi\)
0.243529 + 0.969894i \(0.421695\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.23821 0.0429015
\(834\) 0 0
\(835\) 12.5759 0.435206
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 32.9804 1.13861 0.569305 0.822127i \(-0.307212\pi\)
0.569305 + 0.822127i \(0.307212\pi\)
\(840\) 0 0
\(841\) −27.8037 −0.958749
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.04226 0.242261
\(846\) 0 0
\(847\) 58.8790 2.02311
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.81840 −0.0966136
\(852\) 0 0
\(853\) 33.3116 1.14057 0.570284 0.821448i \(-0.306833\pi\)
0.570284 + 0.821448i \(0.306833\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37.6136 1.28486 0.642428 0.766346i \(-0.277927\pi\)
0.642428 + 0.766346i \(0.277927\pi\)
\(858\) 0 0
\(859\) 8.02550 0.273826 0.136913 0.990583i \(-0.456282\pi\)
0.136913 + 0.990583i \(0.456282\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.7281 −0.365190 −0.182595 0.983188i \(-0.558450\pi\)
−0.182595 + 0.983188i \(0.558450\pi\)
\(864\) 0 0
\(865\) −13.4188 −0.456254
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 32.5437 1.10397
\(870\) 0 0
\(871\) −8.47290 −0.287093
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.33529 −0.0789473
\(876\) 0 0
\(877\) 17.1459 0.578976 0.289488 0.957182i \(-0.406515\pi\)
0.289488 + 0.957182i \(0.406515\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.7988 −0.565967 −0.282984 0.959125i \(-0.591324\pi\)
−0.282984 + 0.959125i \(0.591324\pi\)
\(882\) 0 0
\(883\) −25.8809 −0.870962 −0.435481 0.900198i \(-0.643422\pi\)
−0.435481 + 0.900198i \(0.643422\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −32.5024 −1.09132 −0.545661 0.838006i \(-0.683721\pi\)
−0.545661 + 0.838006i \(0.683721\pi\)
\(888\) 0 0
\(889\) 15.1261 0.507313
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.5267 0.352264
\(894\) 0 0
\(895\) 11.8665 0.396655
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.19101 0.273185
\(900\) 0 0
\(901\) 9.55228 0.318233
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.06584 −0.168394
\(906\) 0 0
\(907\) 54.7794 1.81892 0.909459 0.415793i \(-0.136496\pi\)
0.909459 + 0.415793i \(0.136496\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 43.7616 1.44989 0.724943 0.688808i \(-0.241866\pi\)
0.724943 + 0.688808i \(0.241866\pi\)
\(912\) 0 0
\(913\) −32.8833 −1.08828
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −43.5361 −1.43769
\(918\) 0 0
\(919\) 28.4694 0.939118 0.469559 0.882901i \(-0.344413\pi\)
0.469559 + 0.882901i \(0.344413\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 24.1773 0.795805
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.1808 −0.924582 −0.462291 0.886728i \(-0.652972\pi\)
−0.462291 + 0.886728i \(0.652972\pi\)
\(930\) 0 0
\(931\) −1.23821 −0.0405808
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.81840 −0.157579
\(936\) 0 0
\(937\) 40.1805 1.31264 0.656320 0.754483i \(-0.272112\pi\)
0.656320 + 0.754483i \(0.272112\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.43349 0.111929 0.0559644 0.998433i \(-0.482177\pi\)
0.0559644 + 0.998433i \(0.482177\pi\)
\(942\) 0 0
\(943\) 28.1054 0.915237
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.01016 −0.227799 −0.113900 0.993492i \(-0.536334\pi\)
−0.113900 + 0.993492i \(0.536334\pi\)
\(948\) 0 0
\(949\) 2.31519 0.0751543
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12.2012 −0.395236 −0.197618 0.980279i \(-0.563321\pi\)
−0.197618 + 0.980279i \(0.563321\pi\)
\(954\) 0 0
\(955\) 17.1891 0.556226
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 43.1336 1.39286
\(960\) 0 0
\(961\) 25.0850 0.809192
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.1409 0.390831
\(966\) 0 0
\(967\) 22.6274 0.727648 0.363824 0.931468i \(-0.381471\pi\)
0.363824 + 0.931468i \(0.381471\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.4871 −0.946287 −0.473143 0.880985i \(-0.656881\pi\)
−0.473143 + 0.880985i \(0.656881\pi\)
\(972\) 0 0
\(973\) −20.3884 −0.653622
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.279799 −0.00895158 −0.00447579 0.999990i \(-0.501425\pi\)
−0.00447579 + 0.999990i \(0.501425\pi\)
\(978\) 0 0
\(979\) 57.7370 1.84528
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 50.6891 1.61673 0.808365 0.588681i \(-0.200353\pi\)
0.808365 + 0.588681i \(0.200353\pi\)
\(984\) 0 0
\(985\) 2.81840 0.0898017
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.19101 0.260459
\(990\) 0 0
\(991\) 33.7763 1.07294 0.536469 0.843920i \(-0.319758\pi\)
0.536469 + 0.843920i \(0.319758\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.76099 −0.182636
\(996\) 0 0
\(997\) −45.5633 −1.44300 −0.721502 0.692412i \(-0.756548\pi\)
−0.721502 + 0.692412i \(0.756548\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6660.2.a.s.1.3 4
3.2 odd 2 2220.2.a.k.1.3 4
12.11 even 2 8880.2.a.cf.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2220.2.a.k.1.3 4 3.2 odd 2
6660.2.a.s.1.3 4 1.1 even 1 trivial
8880.2.a.cf.1.2 4 12.11 even 2