L(s) = 1 | − 4i·2-s + 9.04i·3-s − 16·4-s + 36.1·6-s + 77.0i·7-s + 64i·8-s + 161.·9-s + 463.·11-s − 144. i·12-s + 169i·13-s + 308.·14-s + 256·16-s + 1.86e3i·17-s − 644. i·18-s + 618.·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.580i·3-s − 0.5·4-s + 0.410·6-s + 0.594i·7-s + 0.353i·8-s + 0.663·9-s + 1.15·11-s − 0.290i·12-s + 0.277i·13-s + 0.420·14-s + 0.250·16-s + 1.56i·17-s − 0.469i·18-s + 0.392·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
2.311854262 |
L(21) |
≈ |
2.311854262 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 13 | 1−169iT |
good | 3 | 1−9.04iT−243T2 |
| 7 | 1−77.0iT−1.68e4T2 |
| 11 | 1−463.T+1.61e5T2 |
| 17 | 1−1.86e3iT−1.41e6T2 |
| 19 | 1−618.T+2.47e6T2 |
| 23 | 1−1.71e3iT−6.43e6T2 |
| 29 | 1−5.86e3T+2.05e7T2 |
| 31 | 1+545.T+2.86e7T2 |
| 37 | 1+1.23e4iT−6.93e7T2 |
| 41 | 1+1.77e4T+1.15e8T2 |
| 43 | 1+1.26e4iT−1.47e8T2 |
| 47 | 1+1.59e4iT−2.29e8T2 |
| 53 | 1−2.79e4iT−4.18e8T2 |
| 59 | 1−2.22e4T+7.14e8T2 |
| 61 | 1−5.54e3T+8.44e8T2 |
| 67 | 1−5.96e4iT−1.35e9T2 |
| 71 | 1+6.72e4T+1.80e9T2 |
| 73 | 1+6.73e4iT−2.07e9T2 |
| 79 | 1−4.90e4T+3.07e9T2 |
| 83 | 1+1.25e4iT−3.93e9T2 |
| 89 | 1−1.36e3T+5.58e9T2 |
| 97 | 1−5.80e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11336037001943811248353186732, −9.080711470518403085407296672574, −8.671214185374675549537889170108, −7.31713844392224610055770436578, −6.23680823340364545875570562925, −5.20519040235512182770908392387, −4.09192726373308880786002949974, −3.56270454889092994946501765573, −2.06599223186808326222511489279, −1.16729531637881375391571567905,
0.57361469626341049233375630817, 1.37769705312942184495820928695, 3.01725868144286100281246537927, 4.27037542542211975411927471827, 5.03539546285517689201827733460, 6.50764220212980506986409170547, 6.82095483841854668086942861749, 7.69787123293199042388872038979, 8.568118250657419652031211602614, 9.621188136452250106392456576217