Properties

Label 2-64800-1.1-c1-0-22
Degree $2$
Conductor $64800$
Sign $1$
Analytic cond. $517.430$
Root an. cond. $22.7471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·11-s + 4·13-s + 3·17-s + 4·19-s − 2·23-s + 2·29-s − 4·31-s − 4·37-s + 10·41-s − 7·43-s + 4·47-s − 7·49-s − 8·53-s − 59-s + 4·61-s + 12·67-s + 14·71-s + 2·73-s + 83-s − 89-s − 17·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.904·11-s + 1.10·13-s + 0.727·17-s + 0.917·19-s − 0.417·23-s + 0.371·29-s − 0.718·31-s − 0.657·37-s + 1.56·41-s − 1.06·43-s + 0.583·47-s − 49-s − 1.09·53-s − 0.130·59-s + 0.512·61-s + 1.46·67-s + 1.66·71-s + 0.234·73-s + 0.109·83-s − 0.105·89-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64800\)    =    \(2^{5} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(517.430\)
Root analytic conductor: \(22.7471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.182697610\)
\(L(\frac12)\) \(\approx\) \(3.182697610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.17717753935991, −13.88254713921592, −13.27200797787669, −12.55687977077916, −12.35038190480274, −11.62916275097669, −11.18645848563690, −10.86642482066077, −10.00773720975272, −9.670961912143463, −9.146550735658061, −8.588431203009664, −7.996749655436801, −7.620461793315970, −6.693641417139246, −6.569152852248201, −5.711311460652997, −5.382151915798350, −4.606154906991823, −3.840968297926015, −3.545212794154723, −2.874033424023561, −1.908802572784128, −1.316600211765433, −0.6525794578142189, 0.6525794578142189, 1.316600211765433, 1.908802572784128, 2.874033424023561, 3.545212794154723, 3.840968297926015, 4.606154906991823, 5.382151915798350, 5.711311460652997, 6.569152852248201, 6.693641417139246, 7.620461793315970, 7.996749655436801, 8.588431203009664, 9.146550735658061, 9.670961912143463, 10.00773720975272, 10.86642482066077, 11.18645848563690, 11.62916275097669, 12.35038190480274, 12.55687977077916, 13.27200797787669, 13.88254713921592, 14.17717753935991

Graph of the $Z$-function along the critical line