L(s) = 1 | + (−1 + 1.73i)5-s + (2 + 3.46i)11-s + (1 − 1.73i)13-s − 2·17-s − 4·19-s + (−4 + 6.92i)23-s + (0.500 + 0.866i)25-s + (3 + 5.19i)29-s + (−4 + 6.92i)31-s + 6·37-s + (−3 + 5.19i)41-s + (−2 − 3.46i)43-s + (3.5 − 6.06i)49-s + 2·53-s − 7.99·55-s + ⋯ |
L(s) = 1 | + (−0.447 + 0.774i)5-s + (0.603 + 1.04i)11-s + (0.277 − 0.480i)13-s − 0.485·17-s − 0.917·19-s + (−0.834 + 1.44i)23-s + (0.100 + 0.173i)25-s + (0.557 + 0.964i)29-s + (−0.718 + 1.24i)31-s + 0.986·37-s + (−0.468 + 0.811i)41-s + (−0.304 − 0.528i)43-s + (0.5 − 0.866i)49-s + 0.274·53-s − 1.07·55-s + ⋯ |
Λ(s)=(=(648s/2ΓC(s)L(s)(−0.173−0.984i)Λ(2−s)
Λ(s)=(=(648s/2ΓC(s+1/2)L(s)(−0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
648
= 23⋅34
|
Sign: |
−0.173−0.984i
|
Analytic conductor: |
5.17430 |
Root analytic conductor: |
2.27471 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ648(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 648, ( :1/2), −0.173−0.984i)
|
Particular Values
L(1) |
≈ |
0.722386+0.860906i |
L(21) |
≈ |
0.722386+0.860906i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(1−1.73i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(−2−3.46i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1+1.73i)T+(−6.5−11.2i)T2 |
| 17 | 1+2T+17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+(4−6.92i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3−5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4−6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1−6T+37T2 |
| 41 | 1+(3−5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2+3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−23.5+40.7i)T2 |
| 53 | 1−2T+53T2 |
| 59 | 1+(−2+3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1−1.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2+3.46i)T+(−33.5−58.0i)T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+(−4−6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1+(2+3.46i)T+(−41.5+71.8i)T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79136450462894180523473862426, −10.03990724943601265756739972569, −9.091511287807946275349639651779, −8.118841486681787115399695592518, −7.13723303190089553070670520054, −6.58556329768194161716179141707, −5.32243520848985869924111779925, −4.14448695326889604007949906289, −3.22565559483863579379392605700, −1.78851140451292107198070039481,
0.61352758754528296354893035184, 2.32944008006588739182324639947, 3.95848441804194632447127503776, 4.49268408687844431066816523150, 5.94282249146933867362057864076, 6.56281557415033051199783292596, 7.958739800770420305055354198236, 8.572771034830756329105478232988, 9.228785968814071162613509608709, 10.39364945474135883701952701496