L(s) = 1 | + (−1 − 1.73i)5-s + (2 − 3.46i)11-s + (1 + 1.73i)13-s − 2·17-s − 4·19-s + (−4 − 6.92i)23-s + (0.500 − 0.866i)25-s + (3 − 5.19i)29-s + (−4 − 6.92i)31-s + 6·37-s + (−3 − 5.19i)41-s + (−2 + 3.46i)43-s + (3.5 + 6.06i)49-s + 2·53-s − 7.99·55-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.774i)5-s + (0.603 − 1.04i)11-s + (0.277 + 0.480i)13-s − 0.485·17-s − 0.917·19-s + (−0.834 − 1.44i)23-s + (0.100 − 0.173i)25-s + (0.557 − 0.964i)29-s + (−0.718 − 1.24i)31-s + 0.986·37-s + (−0.468 − 0.811i)41-s + (−0.304 + 0.528i)43-s + (0.5 + 0.866i)49-s + 0.274·53-s − 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.722386 - 0.860906i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.722386 - 0.860906i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1 + 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (4 + 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2 - 3.46i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39364945474135883701952701496, −9.228785968814071162613509608709, −8.572771034830756329105478232988, −7.958739800770420305055354198236, −6.56281557415033051199783292596, −5.94282249146933867362057864076, −4.49268408687844431066816523150, −3.95848441804194632447127503776, −2.32944008006588739182324639947, −0.61352758754528296354893035184,
1.78851140451292107198070039481, 3.22565559483863579379392605700, 4.14448695326889604007949906289, 5.32243520848985869924111779925, 6.58556329768194161716179141707, 7.13723303190089553070670520054, 8.118841486681787115399695592518, 9.091511287807946275349639651779, 10.03990724943601265756739972569, 10.79136450462894180523473862426