Properties

Label 2-640-40.19-c0-0-3
Degree $2$
Conductor $640$
Sign $1$
Analytic cond. $0.319401$
Root an. cond. $0.565156$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 9-s − 2·13-s + 25-s + 2·37-s − 2·41-s + 45-s − 49-s − 2·53-s − 2·65-s + 81-s − 2·89-s − 2·117-s + ⋯
L(s)  = 1  + 5-s + 9-s − 2·13-s + 25-s + 2·37-s − 2·41-s + 45-s − 49-s − 2·53-s − 2·65-s + 81-s − 2·89-s − 2·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(640\)    =    \(2^{7} \cdot 5\)
Sign: $1$
Analytic conductor: \(0.319401\)
Root analytic conductor: \(0.565156\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{640} (319, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 640,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.075682076\)
\(L(\frac12)\) \(\approx\) \(1.075682076\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
good3 \( ( 1 - T )( 1 + T ) \)
7 \( 1 + T^{2} \)
11 \( 1 + T^{2} \)
13 \( ( 1 + T )^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T^{2} \)
23 \( 1 + T^{2} \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )^{2} \)
41 \( ( 1 + T )^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 + T^{2} \)
53 \( ( 1 + T )^{2} \)
59 \( 1 + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 + T )^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54084304354964395691075886994, −9.729712662057488648957680679660, −9.500384471040201475259483519729, −8.082021528371257056318816700579, −7.16733875266746824663062543378, −6.40443598975829644258558716542, −5.18967432962928876678886054523, −4.50078125078808494351527017328, −2.86697402093101442966411633672, −1.74734273081965734853890247831, 1.74734273081965734853890247831, 2.86697402093101442966411633672, 4.50078125078808494351527017328, 5.18967432962928876678886054523, 6.40443598975829644258558716542, 7.16733875266746824663062543378, 8.082021528371257056318816700579, 9.500384471040201475259483519729, 9.729712662057488648957680679660, 10.54084304354964395691075886994

Graph of the $Z$-function along the critical line