Properties

Label 640.1.e.b
Level $640$
Weight $1$
Character orbit 640.e
Self dual yes
Analytic conductor $0.319$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -4, -40, 40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,1,Mod(319,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.319"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 640.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.319401608085\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(i, \sqrt{10})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.2560.1
Stark unit: Root of $x^{4} - 100x^{3} - 58x^{2} - 100x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{5} + q^{9} - 2 q^{13} + q^{25} + 2 q^{37} - 2 q^{41} + q^{45} - q^{49} - 2 q^{53} - 2 q^{65} + q^{81} - 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
319.1
0
0 0 0 1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
40.f even 2 1 RM by \(\Q(\sqrt{10}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.1.e.b yes 1
4.b odd 2 1 CM 640.1.e.b yes 1
5.b even 2 1 640.1.e.a 1
5.c odd 4 2 3200.1.g.b 2
8.b even 2 1 640.1.e.a 1
8.d odd 2 1 640.1.e.a 1
16.e even 4 2 1280.1.h.b 2
16.f odd 4 2 1280.1.h.b 2
20.d odd 2 1 640.1.e.a 1
20.e even 4 2 3200.1.g.b 2
40.e odd 2 1 CM 640.1.e.b yes 1
40.f even 2 1 RM 640.1.e.b yes 1
40.i odd 4 2 3200.1.g.b 2
40.k even 4 2 3200.1.g.b 2
80.k odd 4 2 1280.1.h.b 2
80.q even 4 2 1280.1.h.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.1.e.a 1 5.b even 2 1
640.1.e.a 1 8.b even 2 1
640.1.e.a 1 8.d odd 2 1
640.1.e.a 1 20.d odd 2 1
640.1.e.b yes 1 1.a even 1 1 trivial
640.1.e.b yes 1 4.b odd 2 1 CM
640.1.e.b yes 1 40.e odd 2 1 CM
640.1.e.b yes 1 40.f even 2 1 RM
1280.1.h.b 2 16.e even 4 2
1280.1.h.b 2 16.f odd 4 2
1280.1.h.b 2 80.k odd 4 2
1280.1.h.b 2 80.q even 4 2
3200.1.g.b 2 5.c odd 4 2
3200.1.g.b 2 20.e even 4 2
3200.1.g.b 2 40.i odd 4 2
3200.1.g.b 2 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(640, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less