L(s) = 1 | + 2-s + (−1.5 + 2.59i)3-s − 4-s + (1.5 − 2.59i)5-s + (−1.5 + 2.59i)6-s − 3·8-s + (−3 − 5.19i)9-s + (1.5 − 2.59i)10-s + (1.5 − 2.59i)11-s + (1.5 − 2.59i)12-s + (1 − 3.46i)13-s + (4.5 + 7.79i)15-s − 16-s + 2·17-s + (−3 − 5.19i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.866 + 1.49i)3-s − 0.5·4-s + (0.670 − 1.16i)5-s + (−0.612 + 1.06i)6-s − 1.06·8-s + (−1 − 1.73i)9-s + (0.474 − 0.821i)10-s + (0.452 − 0.783i)11-s + (0.433 − 0.749i)12-s + (0.277 − 0.960i)13-s + (1.16 + 2.01i)15-s − 0.250·16-s + 0.485·17-s + (−0.707 − 1.22i)18-s + (−0.114 − 0.198i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.788+0.615i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.788+0.615i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.788+0.615i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.788+0.615i)
|
Particular Values
L(1) |
≈ |
1.16211−0.400115i |
L(21) |
≈ |
1.16211−0.400115i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−1+3.46i)T |
good | 2 | 1−T+2T2 |
| 3 | 1+(1.5−2.59i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.5+2.59i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.5+2.59i)T+(−5.5−9.52i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+(0.5+0.866i)T+(−9.5+16.4i)T2 |
| 23 | 1+23T2 |
| 29 | 1+(3.5+6.06i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.5−2.59i)T+(−15.5+26.8i)T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(−1.5−2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.5+6.06i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.5+0.866i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1.5+2.59i)T+(−26.5+45.8i)T2 |
| 59 | 1−4T+59T2 |
| 61 | 1+(6.5+11.2i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.5+2.59i)T+(−33.5−58.0i)T2 |
| 71 | 1+(6.5−11.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+(6.5+11.2i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−1.5+2.59i)T+(−39.5−68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(2.5−4.33i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40862877019752126746322511114, −9.600246175692059040102002772527, −9.069295824135164454064268136349, −8.253635428651120014387623823920, −6.11055666883225270480791372074, −5.64632314701751292668146259107, −4.99440595445804030262982022108, −4.17980600137660020231207138725, −3.28969065644276697809865200440, −0.63879991993342906314309035535,
1.55535963690720593600409619946, 2.75810618453237808642489293905, 4.24172625753363698227480771009, 5.52199942051984384581974102511, 6.19608207106081283978248930988, 6.83558622988435071504855307682, 7.59423588506133414293067071337, 8.949953815024556367006728802541, 9.922556701233750088242751248758, 10.97362943160390685804829381039