L(s) = 1 | + 2-s + (−1.5 − 2.59i)3-s − 4-s + (1.5 + 2.59i)5-s + (−1.5 − 2.59i)6-s − 3·8-s + (−3 + 5.19i)9-s + (1.5 + 2.59i)10-s + (1.5 + 2.59i)11-s + (1.5 + 2.59i)12-s + (1 + 3.46i)13-s + (4.5 − 7.79i)15-s − 16-s + 2·17-s + (−3 + 5.19i)18-s + (−0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.866 − 1.49i)3-s − 0.5·4-s + (0.670 + 1.16i)5-s + (−0.612 − 1.06i)6-s − 1.06·8-s + (−1 + 1.73i)9-s + (0.474 + 0.821i)10-s + (0.452 + 0.783i)11-s + (0.433 + 0.749i)12-s + (0.277 + 0.960i)13-s + (1.16 − 2.01i)15-s − 0.250·16-s + 0.485·17-s + (−0.707 + 1.22i)18-s + (−0.114 + 0.198i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.16211 + 0.400115i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16211 + 0.400115i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-1 - 3.46i)T \) |
good | 2 | \( 1 - T + 2T^{2} \) |
| 3 | \( 1 + (1.5 + 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + (3.5 - 6.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.5 + 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.5 - 6.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 + (6.5 - 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.5 + 11.2i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (6.5 - 11.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.5 - 2.59i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (2.5 + 4.33i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97362943160390685804829381039, −9.922556701233750088242751248758, −8.949953815024556367006728802541, −7.59423588506133414293067071337, −6.83558622988435071504855307682, −6.19608207106081283978248930988, −5.52199942051984384581974102511, −4.24172625753363698227480771009, −2.75810618453237808642489293905, −1.55535963690720593600409619946,
0.63879991993342906314309035535, 3.28969065644276697809865200440, 4.17980600137660020231207138725, 4.99440595445804030262982022108, 5.64632314701751292668146259107, 6.11055666883225270480791372074, 8.253635428651120014387623823920, 9.069295824135164454064268136349, 9.600246175692059040102002772527, 10.40862877019752126746322511114