L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.707 − 1.22i)3-s + (0.500 + 0.866i)4-s − 4.09·5-s + (0.707 + 1.22i)6-s − 3·8-s + (0.500 + 0.866i)9-s + (2.04 − 3.54i)10-s + (1.89 − 3.28i)11-s + 1.41·12-s + (0.634 − 3.54i)13-s + (−2.89 + 5.01i)15-s + (0.500 − 0.866i)16-s + (−0.634 − 1.09i)17-s − 1.00·18-s + (−1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.408 − 0.707i)3-s + (0.250 + 0.433i)4-s − 1.83·5-s + (0.288 + 0.499i)6-s − 1.06·8-s + (0.166 + 0.288i)9-s + (0.647 − 1.12i)10-s + (0.572 − 0.991i)11-s + 0.408·12-s + (0.176 − 0.984i)13-s + (−0.748 + 1.29i)15-s + (0.125 − 0.216i)16-s + (−0.153 − 0.266i)17-s − 0.235·18-s + (−0.324 − 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.566 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.566 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.756708 - 0.398206i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.756708 - 0.398206i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-0.634 + 3.54i)T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.707 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 4.09T + 5T^{2} \) |
| 11 | \( 1 + (-1.89 + 3.28i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.634 + 1.09i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.41 + 2.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.89 + 6.75i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.397 - 0.689i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.41T + 31T^{2} \) |
| 37 | \( 1 + (1.39 - 2.42i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.48 + 2.57i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.89 + 6.75i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + 12.5T + 53T^{2} \) |
| 59 | \( 1 + (6.21 + 10.7i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.17 - 7.22i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.89 + 3.28i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 12.5T + 73T^{2} \) |
| 79 | \( 1 + 2.20T + 79T^{2} \) |
| 83 | \( 1 - 9.89T + 83T^{2} \) |
| 89 | \( 1 + (7.48 - 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.12 + 3.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78179678117143708607293338192, −8.981241484820736069845600791414, −8.262170893862692574803118450506, −8.008515093698000955842782518214, −7.04173194717886273713438738542, −6.51887812640304525106412077395, −4.85820613259197606235553040773, −3.57910202067471369815569415453, −2.82150506863908742318423780555, −0.53232870906208110014845274271,
1.45609047296740185031699039074, 3.18876440264667660329093342746, 3.97218738204525399490237577974, 4.74355490065593425920397134226, 6.46499156511041531122446872036, 7.23831406617797693454834055276, 8.324559688547476036254226184074, 9.251734122052641190809261776357, 9.721405955812685335685363952160, 10.82729759026282260547301717660