Properties

Label 2-637-13.3-c1-0-4
Degree $2$
Conductor $637$
Sign $0.566 - 0.824i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.707 + 1.22i)3-s + (0.500 − 0.866i)4-s − 4.09·5-s + (0.707 − 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (2.04 + 3.54i)10-s + (1.89 + 3.28i)11-s + 1.41·12-s + (0.634 + 3.54i)13-s + (−2.89 − 5.01i)15-s + (0.500 + 0.866i)16-s + (−0.634 + 1.09i)17-s − 1.00·18-s + (−1.41 + 2.44i)19-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (0.408 + 0.707i)3-s + (0.250 − 0.433i)4-s − 1.83·5-s + (0.288 − 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (0.647 + 1.12i)10-s + (0.572 + 0.991i)11-s + 0.408·12-s + (0.176 + 0.984i)13-s + (−0.748 − 1.29i)15-s + (0.125 + 0.216i)16-s + (−0.153 + 0.266i)17-s − 0.235·18-s + (−0.324 + 0.561i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.566 - 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.566 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.566 - 0.824i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (393, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.566 - 0.824i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.756708 + 0.398206i\)
\(L(\frac12)\) \(\approx\) \(0.756708 + 0.398206i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-0.634 - 3.54i)T \)
good2 \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (-0.707 - 1.22i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + 4.09T + 5T^{2} \)
11 \( 1 + (-1.89 - 3.28i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (0.634 - 1.09i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.41 - 2.44i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.89 - 6.75i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.397 + 0.689i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 1.41T + 31T^{2} \)
37 \( 1 + (1.39 + 2.42i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.48 - 2.57i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (3.89 - 6.75i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 2.82T + 47T^{2} \)
53 \( 1 + 12.5T + 53T^{2} \)
59 \( 1 + (6.21 - 10.7i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.17 + 7.22i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.89 - 3.28i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 12.5T + 73T^{2} \)
79 \( 1 + 2.20T + 79T^{2} \)
83 \( 1 - 9.89T + 83T^{2} \)
89 \( 1 + (7.48 + 12.9i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (2.12 - 3.67i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82729759026282260547301717660, −9.721405955812685335685363952160, −9.251734122052641190809261776357, −8.324559688547476036254226184074, −7.23831406617797693454834055276, −6.46499156511041531122446872036, −4.74355490065593425920397134226, −3.97218738204525399490237577974, −3.18876440264667660329093342746, −1.45609047296740185031699039074, 0.53232870906208110014845274271, 2.82150506863908742318423780555, 3.57910202067471369815569415453, 4.85820613259197606235553040773, 6.51887812640304525106412077395, 7.04173194717886273713438738542, 8.008515093698000955842782518214, 8.262170893862692574803118450506, 8.981241484820736069845600791414, 10.78179678117143708607293338192

Graph of the $Z$-function along the critical line