L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.707 + 1.22i)3-s + (0.500 − 0.866i)4-s − 4.09·5-s + (0.707 − 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (2.04 + 3.54i)10-s + (1.89 + 3.28i)11-s + 1.41·12-s + (0.634 + 3.54i)13-s + (−2.89 − 5.01i)15-s + (0.500 + 0.866i)16-s + (−0.634 + 1.09i)17-s − 1.00·18-s + (−1.41 + 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.408 + 0.707i)3-s + (0.250 − 0.433i)4-s − 1.83·5-s + (0.288 − 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (0.647 + 1.12i)10-s + (0.572 + 0.991i)11-s + 0.408·12-s + (0.176 + 0.984i)13-s + (−0.748 − 1.29i)15-s + (0.125 + 0.216i)16-s + (−0.153 + 0.266i)17-s − 0.235·18-s + (−0.324 + 0.561i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.566−0.824i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.566−0.824i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.566−0.824i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.566−0.824i)
|
Particular Values
L(1) |
≈ |
0.756708+0.398206i |
L(21) |
≈ |
0.756708+0.398206i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−0.634−3.54i)T |
good | 2 | 1+(0.5+0.866i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.707−1.22i)T+(−1.5+2.59i)T2 |
| 5 | 1+4.09T+5T2 |
| 11 | 1+(−1.89−3.28i)T+(−5.5+9.52i)T2 |
| 17 | 1+(0.634−1.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.41−2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.89−6.75i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.397+0.689i)T+(−14.5+25.1i)T2 |
| 31 | 1−1.41T+31T2 |
| 37 | 1+(1.39+2.42i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.48−2.57i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.89−6.75i)T+(−21.5−37.2i)T2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1+12.5T+53T2 |
| 59 | 1+(6.21−10.7i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.17+7.22i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.89−3.28i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3−5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1−12.5T+73T2 |
| 79 | 1+2.20T+79T2 |
| 83 | 1−9.89T+83T2 |
| 89 | 1+(7.48+12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.12−3.67i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.82729759026282260547301717660, −9.721405955812685335685363952160, −9.251734122052641190809261776357, −8.324559688547476036254226184074, −7.23831406617797693454834055276, −6.46499156511041531122446872036, −4.74355490065593425920397134226, −3.97218738204525399490237577974, −3.18876440264667660329093342746, −1.45609047296740185031699039074,
0.53232870906208110014845274271, 2.82150506863908742318423780555, 3.57910202067471369815569415453, 4.85820613259197606235553040773, 6.51887812640304525106412077395, 7.04173194717886273713438738542, 8.008515093698000955842782518214, 8.262170893862692574803118450506, 8.981241484820736069845600791414, 10.78179678117143708607293338192