L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.707 + 1.22i)3-s + (0.500 − 0.866i)4-s + 2.68·5-s + (0.707 − 1.22i)6-s − 3·8-s + (0.500 − 0.866i)9-s + (−1.34 − 2.32i)10-s + (−2.89 − 5.01i)11-s + 1.41·12-s + (−2.75 − 2.32i)13-s + (1.89 + 3.28i)15-s + (0.500 + 0.866i)16-s + (2.75 − 4.77i)17-s − 1.00·18-s + (−1.41 + 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.408 + 0.707i)3-s + (0.250 − 0.433i)4-s + 1.20·5-s + (0.288 − 0.499i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (−0.424 − 0.735i)10-s + (−0.873 − 1.51i)11-s + 0.408·12-s + (−0.764 − 0.644i)13-s + (0.490 + 0.848i)15-s + (0.125 + 0.216i)16-s + (0.668 − 1.15i)17-s − 0.235·18-s + (−0.324 + 0.561i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.0910+0.995i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.0910+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.0910+0.995i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.0910+0.995i)
|
Particular Values
L(1) |
≈ |
1.23445−1.12671i |
L(21) |
≈ |
1.23445−1.12671i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(2.75+2.32i)T |
good | 2 | 1+(0.5+0.866i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.707−1.22i)T+(−1.5+2.59i)T2 |
| 5 | 1−2.68T+5T2 |
| 11 | 1+(2.89+5.01i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.75+4.77i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.41−2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.897+1.55i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.39−7.61i)T+(−14.5+25.1i)T2 |
| 31 | 1−1.41T+31T2 |
| 37 | 1+(−3.39−5.88i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.87−8.44i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.897+1.55i)T+(−21.5−37.2i)T2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1−6.59T+53T2 |
| 59 | 1+(−0.562+0.974i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.779+1.34i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.89+5.01i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3−5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1−5.80T+73T2 |
| 79 | 1+11.7T+79T2 |
| 83 | 1−9.89T+83T2 |
| 89 | 1+(−6.07−10.5i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.12−3.67i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19412828352523311799795104499, −9.786578984645920463775055461304, −9.008823285113054234305765720158, −8.080714682681255716862561081337, −6.59081439986157425309242539116, −5.72702079488706144536748750665, −4.99096804346814501108726176686, −3.15993074784555366260208913196, −2.65024334726365737682228740939, −0.977760354114844897107363975100,
2.05312526508072952704541987436, 2.46150903536508792741100307748, 4.38238361967451160998811537737, 5.63698870430492505635840110897, 6.55759822120836391596107954792, 7.40859353588782133375642776116, 7.85669017385208443750199452557, 8.930681543370470385883079646928, 9.835032416503586328604294107453, 10.41882806740735312595596705281