L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.707 − 1.22i)3-s + (0.500 + 0.866i)4-s + 2.68·5-s + (0.707 + 1.22i)6-s − 3·8-s + (0.500 + 0.866i)9-s + (−1.34 + 2.32i)10-s + (−2.89 + 5.01i)11-s + 1.41·12-s + (−2.75 + 2.32i)13-s + (1.89 − 3.28i)15-s + (0.500 − 0.866i)16-s + (2.75 + 4.77i)17-s − 1.00·18-s + (−1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.408 − 0.707i)3-s + (0.250 + 0.433i)4-s + 1.20·5-s + (0.288 + 0.499i)6-s − 1.06·8-s + (0.166 + 0.288i)9-s + (−0.424 + 0.735i)10-s + (−0.873 + 1.51i)11-s + 0.408·12-s + (−0.764 + 0.644i)13-s + (0.490 − 0.848i)15-s + (0.125 − 0.216i)16-s + (0.668 + 1.15i)17-s − 0.235·18-s + (−0.324 − 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0910 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0910 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23445 + 1.12671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23445 + 1.12671i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2.75 - 2.32i)T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.707 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 2.68T + 5T^{2} \) |
| 11 | \( 1 + (2.89 - 5.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.75 - 4.77i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.41 + 2.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.897 - 1.55i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.39 + 7.61i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.41T + 31T^{2} \) |
| 37 | \( 1 + (-3.39 + 5.88i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.87 + 8.44i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.897 - 1.55i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 - 6.59T + 53T^{2} \) |
| 59 | \( 1 + (-0.562 - 0.974i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.779 - 1.34i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.89 - 5.01i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.80T + 73T^{2} \) |
| 79 | \( 1 + 11.7T + 79T^{2} \) |
| 83 | \( 1 - 9.89T + 83T^{2} \) |
| 89 | \( 1 + (-6.07 + 10.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.12 + 3.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41882806740735312595596705281, −9.835032416503586328604294107453, −8.930681543370470385883079646928, −7.85669017385208443750199452557, −7.40859353588782133375642776116, −6.55759822120836391596107954792, −5.63698870430492505635840110897, −4.38238361967451160998811537737, −2.46150903536508792741100307748, −2.05312526508072952704541987436,
0.977760354114844897107363975100, 2.65024334726365737682228740939, 3.15993074784555366260208913196, 4.99096804346814501108726176686, 5.72702079488706144536748750665, 6.59081439986157425309242539116, 8.080714682681255716862561081337, 9.008823285113054234305765720158, 9.786578984645920463775055461304, 10.19412828352523311799795104499