L(s) = 1 | + (0.651 + 1.12i)2-s + (−1.44 − 2.49i)3-s + (0.151 − 0.262i)4-s + 2.88·5-s + (1.87 − 3.25i)6-s + 3·8-s + (−2.65 + 4.59i)9-s + (1.87 + 3.25i)10-s + (2.95 + 5.11i)11-s − 0.872·12-s + (3.31 − 1.41i)13-s + (−4.15 − 7.19i)15-s + (1.65 + 2.86i)16-s + (0.436 − 0.755i)17-s − 6.90·18-s + (−1.44 + 2.49i)19-s + ⋯ |
L(s) = 1 | + (0.460 + 0.797i)2-s + (−0.831 − 1.44i)3-s + (0.0756 − 0.131i)4-s + 1.28·5-s + (0.766 − 1.32i)6-s + 1.06·8-s + (−0.883 + 1.53i)9-s + (0.593 + 1.02i)10-s + (0.890 + 1.54i)11-s − 0.251·12-s + (0.920 − 0.391i)13-s + (−1.07 − 1.85i)15-s + (0.412 + 0.715i)16-s + (0.105 − 0.183i)17-s − 1.62·18-s + (−0.330 + 0.572i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.929+0.367i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.929+0.367i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.929+0.367i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.929+0.367i)
|
Particular Values
L(1) |
≈ |
2.06157−0.392923i |
L(21) |
≈ |
2.06157−0.392923i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−3.31+1.41i)T |
good | 2 | 1+(−0.651−1.12i)T+(−1+1.73i)T2 |
| 3 | 1+(1.44+2.49i)T+(−1.5+2.59i)T2 |
| 5 | 1−2.88T+5T2 |
| 11 | 1+(−2.95−5.11i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.436+0.755i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.44−2.49i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.30+5.72i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.651+1.12i)T+(−14.5+25.1i)T2 |
| 31 | 1−0.872T+31T2 |
| 37 | 1+(0.697+1.20i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.75+6.50i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.75−4.77i)T+(−21.5−37.2i)T2 |
| 47 | 1+12.3T+47T2 |
| 53 | 1−9.60T+53T2 |
| 59 | 1+(3.31−5.74i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.88−4.99i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.5+0.866i)T+(−33.5+58.0i)T2 |
| 71 | 1+(2−3.46i)T+(−35.5−61.4i)T2 |
| 73 | 1+5.76T+73T2 |
| 79 | 1−0.605T+79T2 |
| 83 | 1+6.63T+83T2 |
| 89 | 1+(4.32+7.48i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.88+6.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46344422606782093832379282463, −9.883570963730732950160131776171, −8.477942970091084892346464790960, −7.38829721481833646304024647544, −6.68090350237705047870992930143, −6.14814871362150971342404653086, −5.55846951184410142523558076742, −4.43859017682249900036757608598, −2.05412434316914290697350386237, −1.42916608395552063693088818392,
1.55673566926245904266820283336, 3.25949850134240769253431019742, 3.88842867203087388304476290008, 5.01489422580397478501053742466, 5.89690958828907832784607756917, 6.53220128857062587791015124815, 8.403298490088127199232885187676, 9.288721389444393278189238305972, 10.01837025929979170651104630248, 10.76624756588184151882206790942