Properties

Label 2-637-13.3-c1-0-21
Degree 22
Conductor 637637
Sign 0.929+0.367i0.929 + 0.367i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.651 + 1.12i)2-s + (−1.44 − 2.49i)3-s + (0.151 − 0.262i)4-s + 2.88·5-s + (1.87 − 3.25i)6-s + 3·8-s + (−2.65 + 4.59i)9-s + (1.87 + 3.25i)10-s + (2.95 + 5.11i)11-s − 0.872·12-s + (3.31 − 1.41i)13-s + (−4.15 − 7.19i)15-s + (1.65 + 2.86i)16-s + (0.436 − 0.755i)17-s − 6.90·18-s + (−1.44 + 2.49i)19-s + ⋯
L(s)  = 1  + (0.460 + 0.797i)2-s + (−0.831 − 1.44i)3-s + (0.0756 − 0.131i)4-s + 1.28·5-s + (0.766 − 1.32i)6-s + 1.06·8-s + (−0.883 + 1.53i)9-s + (0.593 + 1.02i)10-s + (0.890 + 1.54i)11-s − 0.251·12-s + (0.920 − 0.391i)13-s + (−1.07 − 1.85i)15-s + (0.412 + 0.715i)16-s + (0.105 − 0.183i)17-s − 1.62·18-s + (−0.330 + 0.572i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.929+0.367i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 + 0.367i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.929+0.367i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.929 + 0.367i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.929+0.367i0.929 + 0.367i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(393,)\chi_{637} (393, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.929+0.367i)(2,\ 637,\ (\ :1/2),\ 0.929 + 0.367i)

Particular Values

L(1)L(1) \approx 2.061570.392923i2.06157 - 0.392923i
L(12)L(\frac12) \approx 2.061570.392923i2.06157 - 0.392923i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+(3.31+1.41i)T 1 + (-3.31 + 1.41i)T
good2 1+(0.6511.12i)T+(1+1.73i)T2 1 + (-0.651 - 1.12i)T + (-1 + 1.73i)T^{2}
3 1+(1.44+2.49i)T+(1.5+2.59i)T2 1 + (1.44 + 2.49i)T + (-1.5 + 2.59i)T^{2}
5 12.88T+5T2 1 - 2.88T + 5T^{2}
11 1+(2.955.11i)T+(5.5+9.52i)T2 1 + (-2.95 - 5.11i)T + (-5.5 + 9.52i)T^{2}
17 1+(0.436+0.755i)T+(8.514.7i)T2 1 + (-0.436 + 0.755i)T + (-8.5 - 14.7i)T^{2}
19 1+(1.442.49i)T+(9.516.4i)T2 1 + (1.44 - 2.49i)T + (-9.5 - 16.4i)T^{2}
23 1+(3.30+5.72i)T+(11.5+19.9i)T2 1 + (3.30 + 5.72i)T + (-11.5 + 19.9i)T^{2}
29 1+(0.651+1.12i)T+(14.5+25.1i)T2 1 + (0.651 + 1.12i)T + (-14.5 + 25.1i)T^{2}
31 10.872T+31T2 1 - 0.872T + 31T^{2}
37 1+(0.697+1.20i)T+(18.5+32.0i)T2 1 + (0.697 + 1.20i)T + (-18.5 + 32.0i)T^{2}
41 1+(3.75+6.50i)T+(20.5+35.5i)T2 1 + (3.75 + 6.50i)T + (-20.5 + 35.5i)T^{2}
43 1+(2.754.77i)T+(21.537.2i)T2 1 + (2.75 - 4.77i)T + (-21.5 - 37.2i)T^{2}
47 1+12.3T+47T2 1 + 12.3T + 47T^{2}
53 19.60T+53T2 1 - 9.60T + 53T^{2}
59 1+(3.315.74i)T+(29.551.0i)T2 1 + (3.31 - 5.74i)T + (-29.5 - 51.0i)T^{2}
61 1+(2.884.99i)T+(30.552.8i)T2 1 + (2.88 - 4.99i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.5+0.866i)T+(33.5+58.0i)T2 1 + (0.5 + 0.866i)T + (-33.5 + 58.0i)T^{2}
71 1+(23.46i)T+(35.561.4i)T2 1 + (2 - 3.46i)T + (-35.5 - 61.4i)T^{2}
73 1+5.76T+73T2 1 + 5.76T + 73T^{2}
79 10.605T+79T2 1 - 0.605T + 79T^{2}
83 1+6.63T+83T2 1 + 6.63T + 83T^{2}
89 1+(4.32+7.48i)T+(44.5+77.0i)T2 1 + (4.32 + 7.48i)T + (-44.5 + 77.0i)T^{2}
97 1+(3.88+6.73i)T+(48.584.0i)T2 1 + (-3.88 + 6.73i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.46344422606782093832379282463, −9.883570963730732950160131776171, −8.477942970091084892346464790960, −7.38829721481833646304024647544, −6.68090350237705047870992930143, −6.14814871362150971342404653086, −5.55846951184410142523558076742, −4.43859017682249900036757608598, −2.05412434316914290697350386237, −1.42916608395552063693088818392, 1.55673566926245904266820283336, 3.25949850134240769253431019742, 3.88842867203087388304476290008, 5.01489422580397478501053742466, 5.89690958828907832784607756917, 6.53220128857062587791015124815, 8.403298490088127199232885187676, 9.288721389444393278189238305972, 10.01837025929979170651104630248, 10.76624756588184151882206790942

Graph of the ZZ-function along the critical line