L(s) = 1 | + (0.651 − 1.12i)2-s + (−1.44 + 2.49i)3-s + (0.151 + 0.262i)4-s + 2.88·5-s + (1.87 + 3.25i)6-s + 3·8-s + (−2.65 − 4.59i)9-s + (1.87 − 3.25i)10-s + (2.95 − 5.11i)11-s − 0.872·12-s + (3.31 + 1.41i)13-s + (−4.15 + 7.19i)15-s + (1.65 − 2.86i)16-s + (0.436 + 0.755i)17-s − 6.90·18-s + (−1.44 − 2.49i)19-s + ⋯ |
L(s) = 1 | + (0.460 − 0.797i)2-s + (−0.831 + 1.44i)3-s + (0.0756 + 0.131i)4-s + 1.28·5-s + (0.766 + 1.32i)6-s + 1.06·8-s + (−0.883 − 1.53i)9-s + (0.593 − 1.02i)10-s + (0.890 − 1.54i)11-s − 0.251·12-s + (0.920 + 0.391i)13-s + (−1.07 + 1.85i)15-s + (0.412 − 0.715i)16-s + (0.105 + 0.183i)17-s − 1.62·18-s + (−0.330 − 0.572i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 - 0.367i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.929 - 0.367i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.06157 + 0.392923i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.06157 + 0.392923i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.31 - 1.41i)T \) |
good | 2 | \( 1 + (-0.651 + 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.44 - 2.49i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 2.88T + 5T^{2} \) |
| 11 | \( 1 + (-2.95 + 5.11i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.436 - 0.755i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.44 + 2.49i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.30 - 5.72i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.651 - 1.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.872T + 31T^{2} \) |
| 37 | \( 1 + (0.697 - 1.20i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.75 - 6.50i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.75 + 4.77i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 12.3T + 47T^{2} \) |
| 53 | \( 1 - 9.60T + 53T^{2} \) |
| 59 | \( 1 + (3.31 + 5.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.88 + 4.99i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2 + 3.46i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.76T + 73T^{2} \) |
| 79 | \( 1 - 0.605T + 79T^{2} \) |
| 83 | \( 1 + 6.63T + 83T^{2} \) |
| 89 | \( 1 + (4.32 - 7.48i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.88 - 6.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76624756588184151882206790942, −10.01837025929979170651104630248, −9.288721389444393278189238305972, −8.403298490088127199232885187676, −6.53220128857062587791015124815, −5.89690958828907832784607756917, −5.01489422580397478501053742466, −3.88842867203087388304476290008, −3.25949850134240769253431019742, −1.55673566926245904266820283336,
1.42916608395552063693088818392, 2.05412434316914290697350386237, 4.43859017682249900036757608598, 5.55846951184410142523558076742, 6.14814871362150971342404653086, 6.68090350237705047870992930143, 7.38829721481833646304024647544, 8.477942970091084892346464790960, 9.883570963730732950160131776171, 10.46344422606782093832379282463