Properties

Label 2-6300-1.1-c1-0-9
Degree $2$
Conductor $6300$
Sign $1$
Analytic cond. $50.3057$
Root an. cond. $7.09265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 11-s − 2·13-s + 6·19-s − 23-s − 29-s − 2·31-s − 7·37-s + 8·41-s − 43-s + 2·47-s + 49-s + 14·53-s − 10·59-s − 3·67-s + 9·71-s − 77-s + 79-s − 2·83-s − 2·89-s + 2·91-s − 10·97-s + 12·101-s + 2·103-s + 4·107-s + 9·109-s + 9·113-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.301·11-s − 0.554·13-s + 1.37·19-s − 0.208·23-s − 0.185·29-s − 0.359·31-s − 1.15·37-s + 1.24·41-s − 0.152·43-s + 0.291·47-s + 1/7·49-s + 1.92·53-s − 1.30·59-s − 0.366·67-s + 1.06·71-s − 0.113·77-s + 0.112·79-s − 0.219·83-s − 0.211·89-s + 0.209·91-s − 1.01·97-s + 1.19·101-s + 0.197·103-s + 0.386·107-s + 0.862·109-s + 0.846·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6300\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(50.3057\)
Root analytic conductor: \(7.09265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.759576273\)
\(L(\frac12)\) \(\approx\) \(1.759576273\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.904453357336250542277945978212, −7.31976198943964832414139567805, −6.74659882658412398535553167643, −5.81464669926226680763336847535, −5.29555087040575953756515648194, −4.38360839169442490484249204662, −3.57740299323049360586678381152, −2.83562009643549761862315939653, −1.84629882751458527881304627929, −0.68988872283584156221148626470, 0.68988872283584156221148626470, 1.84629882751458527881304627929, 2.83562009643549761862315939653, 3.57740299323049360586678381152, 4.38360839169442490484249204662, 5.29555087040575953756515648194, 5.81464669926226680763336847535, 6.74659882658412398535553167643, 7.31976198943964832414139567805, 7.904453357336250542277945978212

Graph of the $Z$-function along the critical line