Properties

Label 2-630-1.1-c3-0-11
Degree $2$
Conductor $630$
Sign $1$
Analytic cond. $37.1712$
Root an. cond. $6.09681$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 5·5-s + 7·7-s + 8·8-s − 10·10-s − 24·11-s + 74·13-s + 14·14-s + 16·16-s − 24·17-s − 34·19-s − 20·20-s − 48·22-s + 168·23-s + 25·25-s + 148·26-s + 28·28-s − 162·29-s + 128·31-s + 32·32-s − 48·34-s − 35·35-s + 380·37-s − 68·38-s − 40·40-s + 126·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.657·11-s + 1.57·13-s + 0.267·14-s + 1/4·16-s − 0.342·17-s − 0.410·19-s − 0.223·20-s − 0.465·22-s + 1.52·23-s + 1/5·25-s + 1.11·26-s + 0.188·28-s − 1.03·29-s + 0.741·31-s + 0.176·32-s − 0.242·34-s − 0.169·35-s + 1.68·37-s − 0.290·38-s − 0.158·40-s + 0.479·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(37.1712\)
Root analytic conductor: \(6.09681\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 630,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.214944286\)
\(L(\frac12)\) \(\approx\) \(3.214944286\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
5 \( 1 + p T \)
7 \( 1 - p T \)
good11 \( 1 + 24 T + p^{3} T^{2} \)
13 \( 1 - 74 T + p^{3} T^{2} \)
17 \( 1 + 24 T + p^{3} T^{2} \)
19 \( 1 + 34 T + p^{3} T^{2} \)
23 \( 1 - 168 T + p^{3} T^{2} \)
29 \( 1 + 162 T + p^{3} T^{2} \)
31 \( 1 - 128 T + p^{3} T^{2} \)
37 \( 1 - 380 T + p^{3} T^{2} \)
41 \( 1 - 126 T + p^{3} T^{2} \)
43 \( 1 + 34 T + p^{3} T^{2} \)
47 \( 1 - 294 T + p^{3} T^{2} \)
53 \( 1 - 6 p T + p^{3} T^{2} \)
59 \( 1 - 444 T + p^{3} T^{2} \)
61 \( 1 + 592 T + p^{3} T^{2} \)
67 \( 1 - 110 T + p^{3} T^{2} \)
71 \( 1 + 198 T + p^{3} T^{2} \)
73 \( 1 - 866 T + p^{3} T^{2} \)
79 \( 1 - 776 T + p^{3} T^{2} \)
83 \( 1 + 576 T + p^{3} T^{2} \)
89 \( 1 + 354 T + p^{3} T^{2} \)
97 \( 1 - 614 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.63334710544528190904571508624, −9.209965228528570860588495656627, −8.334048990653452724558547040246, −7.51161418211733936666610915767, −6.48228815628587559598274266475, −5.57644805811745539166983356497, −4.55087851364028886375480086287, −3.66205104917157337219118779226, −2.50816510259442547823352222052, −0.999776264958444754805440245108, 0.999776264958444754805440245108, 2.50816510259442547823352222052, 3.66205104917157337219118779226, 4.55087851364028886375480086287, 5.57644805811745539166983356497, 6.48228815628587559598274266475, 7.51161418211733936666610915767, 8.334048990653452724558547040246, 9.209965228528570860588495656627, 10.63334710544528190904571508624

Graph of the $Z$-function along the critical line