| L(s) = 1 | + (−0.555 + 0.320i)2-s + (1.58 − 0.709i)3-s + (−0.794 + 1.37i)4-s + (1.10 − 1.91i)5-s + (−0.650 + 0.901i)6-s + (−0.906 + 2.48i)7-s − 2.30i·8-s + (1.99 − 2.24i)9-s + 1.41i·10-s + (−2.93 + 1.69i)11-s + (−0.279 + 2.73i)12-s + (−1.56 − 0.901i)13-s + (−0.293 − 1.67i)14-s + (0.388 − 3.80i)15-s + (−0.849 − 1.47i)16-s − 5.96·17-s + ⋯ |
| L(s) = 1 | + (−0.392 + 0.226i)2-s + (0.912 − 0.409i)3-s + (−0.397 + 0.687i)4-s + (0.494 − 0.856i)5-s + (−0.265 + 0.367i)6-s + (−0.342 + 0.939i)7-s − 0.813i·8-s + (0.664 − 0.747i)9-s + 0.448i·10-s + (−0.885 + 0.511i)11-s + (−0.0806 + 0.790i)12-s + (−0.432 − 0.249i)13-s + (−0.0785 − 0.446i)14-s + (0.100 − 0.983i)15-s + (−0.212 − 0.367i)16-s − 1.44·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.144i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.877521 + 0.0638178i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.877521 + 0.0638178i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.58 + 0.709i)T \) |
| 7 | \( 1 + (0.906 - 2.48i)T \) |
| good | 2 | \( 1 + (0.555 - 0.320i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.10 + 1.91i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.93 - 1.69i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.56 + 0.901i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.96T + 17T^{2} \) |
| 19 | \( 1 + 1.64iT - 19T^{2} \) |
| 23 | \( 1 + (-2.05 - 1.18i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.44 + 1.41i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-9.28 - 5.36i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 1.69T + 37T^{2} \) |
| 41 | \( 1 + (0.455 - 0.788i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.96 + 3.39i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.123 - 0.213i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.87iT - 53T^{2} \) |
| 59 | \( 1 + (5.39 - 9.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.22 + 0.709i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.99 + 6.91i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.1iT - 71T^{2} \) |
| 73 | \( 1 - 0.426iT - 73T^{2} \) |
| 79 | \( 1 + (-2.49 - 4.31i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.28 + 7.42i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 10.5T + 89T^{2} \) |
| 97 | \( 1 + (6.30 - 3.63i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.25289010878114160775682967808, −13.52565603805013017641083402325, −12.97227269790902023890950718830, −12.16412386318947363295813046684, −9.837439584585090778297496859203, −8.950481190633656546737646187534, −8.247860592820650310320152035830, −6.84002042116716227349320229667, −4.79858102474303712610005308165, −2.67006083331478591054067243398,
2.60742785680517495458255626345, 4.57763508591322038403558939724, 6.53249554548544276647403615244, 8.094105212025078339895251011754, 9.422399022012619116663439579587, 10.32488313537306715464052644355, 10.90011066139747276647476212579, 13.32447486167703126218446687718, 13.86248608295219918348242887080, 14.78489842751002289142805644428