| L(s)  = 1 | + (−0.555 − 0.320i)2-s   + (1.58 + 0.709i)3-s   + (−0.794 − 1.37i)4-s   + (1.10 + 1.91i)5-s   + (−0.650 − 0.901i)6-s   + (−0.906 − 2.48i)7-s   + 2.30i·8-s   + (1.99 + 2.24i)9-s   − 1.41i·10-s   + (−2.93 − 1.69i)11-s   + (−0.279 − 2.73i)12-s   + (−1.56 + 0.901i)13-s   + (−0.293 + 1.67i)14-s   + (0.388 + 3.80i)15-s   + (−0.849 + 1.47i)16-s   − 5.96·17-s  + ⋯ | 
| L(s)  = 1 | + (−0.392 − 0.226i)2-s   + (0.912 + 0.409i)3-s   + (−0.397 − 0.687i)4-s   + (0.494 + 0.856i)5-s   + (−0.265 − 0.367i)6-s   + (−0.342 − 0.939i)7-s   + 0.813i·8-s   + (0.664 + 0.747i)9-s   − 0.448i·10-s   + (−0.885 − 0.511i)11-s   + (−0.0806 − 0.790i)12-s   + (−0.432 + 0.249i)13-s   + (−0.0785 + 0.446i)14-s   + (0.100 + 0.983i)15-s   + (−0.212 + 0.367i)16-s   − 1.44·17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.144i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 + 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.877521 - 0.0638178i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.877521 - 0.0638178i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 3 | \( 1 + (-1.58 - 0.709i)T \) | 
|  | 7 | \( 1 + (0.906 + 2.48i)T \) | 
| good | 2 | \( 1 + (0.555 + 0.320i)T + (1 + 1.73i)T^{2} \) | 
|  | 5 | \( 1 + (-1.10 - 1.91i)T + (-2.5 + 4.33i)T^{2} \) | 
|  | 11 | \( 1 + (2.93 + 1.69i)T + (5.5 + 9.52i)T^{2} \) | 
|  | 13 | \( 1 + (1.56 - 0.901i)T + (6.5 - 11.2i)T^{2} \) | 
|  | 17 | \( 1 + 5.96T + 17T^{2} \) | 
|  | 19 | \( 1 - 1.64iT - 19T^{2} \) | 
|  | 23 | \( 1 + (-2.05 + 1.18i)T + (11.5 - 19.9i)T^{2} \) | 
|  | 29 | \( 1 + (-2.44 - 1.41i)T + (14.5 + 25.1i)T^{2} \) | 
|  | 31 | \( 1 + (-9.28 + 5.36i)T + (15.5 - 26.8i)T^{2} \) | 
|  | 37 | \( 1 - 1.69T + 37T^{2} \) | 
|  | 41 | \( 1 + (0.455 + 0.788i)T + (-20.5 + 35.5i)T^{2} \) | 
|  | 43 | \( 1 + (1.96 - 3.39i)T + (-21.5 - 37.2i)T^{2} \) | 
|  | 47 | \( 1 + (-0.123 + 0.213i)T + (-23.5 - 40.7i)T^{2} \) | 
|  | 53 | \( 1 - 7.87iT - 53T^{2} \) | 
|  | 59 | \( 1 + (5.39 + 9.33i)T + (-29.5 + 51.0i)T^{2} \) | 
|  | 61 | \( 1 + (-1.22 - 0.709i)T + (30.5 + 52.8i)T^{2} \) | 
|  | 67 | \( 1 + (-3.99 - 6.91i)T + (-33.5 + 58.0i)T^{2} \) | 
|  | 71 | \( 1 + 12.1iT - 71T^{2} \) | 
|  | 73 | \( 1 + 0.426iT - 73T^{2} \) | 
|  | 79 | \( 1 + (-2.49 + 4.31i)T + (-39.5 - 68.4i)T^{2} \) | 
|  | 83 | \( 1 + (4.28 - 7.42i)T + (-41.5 - 71.8i)T^{2} \) | 
|  | 89 | \( 1 - 10.5T + 89T^{2} \) | 
|  | 97 | \( 1 + (6.30 + 3.63i)T + (48.5 + 84.0i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.78489842751002289142805644428, −13.86248608295219918348242887080, −13.32447486167703126218446687718, −10.90011066139747276647476212579, −10.32488313537306715464052644355, −9.422399022012619116663439579587, −8.094105212025078339895251011754, −6.53249554548544276647403615244, −4.57763508591322038403558939724, −2.60742785680517495458255626345, 
2.67006083331478591054067243398, 4.79858102474303712610005308165, 6.84002042116716227349320229667, 8.247860592820650310320152035830, 8.950481190633656546737646187534, 9.837439584585090778297496859203, 12.16412386318947363295813046684, 12.97227269790902023890950718830, 13.52565603805013017641083402325, 15.25289010878114160775682967808
