Properties

Label 2-6223-1.1-c1-0-130
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.05·2-s + 3.36·3-s + 2.20·4-s − 4.11·5-s − 6.90·6-s − 0.423·8-s + 8.33·9-s + 8.44·10-s + 4.89·11-s + 7.42·12-s − 2.86·13-s − 13.8·15-s − 3.54·16-s − 5.56·17-s − 17.0·18-s + 1.58·19-s − 9.08·20-s − 10.0·22-s + 5.20·23-s − 1.42·24-s + 11.9·25-s + 5.88·26-s + 17.9·27-s − 3.57·29-s + 28.4·30-s − 2.12·31-s + 8.11·32-s + ⋯
L(s)  = 1  − 1.45·2-s + 1.94·3-s + 1.10·4-s − 1.84·5-s − 2.81·6-s − 0.149·8-s + 2.77·9-s + 2.67·10-s + 1.47·11-s + 2.14·12-s − 0.795·13-s − 3.58·15-s − 0.886·16-s − 1.35·17-s − 4.02·18-s + 0.363·19-s − 2.03·20-s − 2.14·22-s + 1.08·23-s − 0.290·24-s + 2.39·25-s + 1.15·26-s + 3.45·27-s − 0.662·29-s + 5.19·30-s − 0.381·31-s + 1.43·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.450033323\)
\(L(\frac12)\) \(\approx\) \(1.450033323\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 2.05T + 2T^{2} \)
3 \( 1 - 3.36T + 3T^{2} \)
5 \( 1 + 4.11T + 5T^{2} \)
11 \( 1 - 4.89T + 11T^{2} \)
13 \( 1 + 2.86T + 13T^{2} \)
17 \( 1 + 5.56T + 17T^{2} \)
19 \( 1 - 1.58T + 19T^{2} \)
23 \( 1 - 5.20T + 23T^{2} \)
29 \( 1 + 3.57T + 29T^{2} \)
31 \( 1 + 2.12T + 31T^{2} \)
37 \( 1 - 4.01T + 37T^{2} \)
41 \( 1 - 5.33T + 41T^{2} \)
43 \( 1 + 4.34T + 43T^{2} \)
47 \( 1 - 3.83T + 47T^{2} \)
53 \( 1 - 2.13T + 53T^{2} \)
59 \( 1 - 1.95T + 59T^{2} \)
61 \( 1 + 12.9T + 61T^{2} \)
67 \( 1 - 11.8T + 67T^{2} \)
71 \( 1 + 4.52T + 71T^{2} \)
73 \( 1 + 8.76T + 73T^{2} \)
79 \( 1 - 12.4T + 79T^{2} \)
83 \( 1 + 7.89T + 83T^{2} \)
89 \( 1 - 0.492T + 89T^{2} \)
97 \( 1 + 1.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.175831957058190377810902432613, −7.59971696567264427722969640341, −7.08355987609667906645015846409, −6.77622142630963771690505582519, −4.58707985464032030918800526793, −4.25184880426735273918707882577, −3.47928990021192572108288666075, −2.68476890451097529460333615465, −1.72670204379763585323125253114, −0.73418154618201360509712052874, 0.73418154618201360509712052874, 1.72670204379763585323125253114, 2.68476890451097529460333615465, 3.47928990021192572108288666075, 4.25184880426735273918707882577, 4.58707985464032030918800526793, 6.77622142630963771690505582519, 7.08355987609667906645015846409, 7.59971696567264427722969640341, 8.175831957058190377810902432613

Graph of the $Z$-function along the critical line