Properties

Label 6223.2.a.t.1.10
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $74$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [74,18,0,86,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(74\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.05093 q^{2} +3.36661 q^{3} +2.20631 q^{4} -4.11869 q^{5} -6.90468 q^{6} -0.423137 q^{8} +8.33406 q^{9} +8.44714 q^{10} +4.89422 q^{11} +7.42780 q^{12} -2.86861 q^{13} -13.8660 q^{15} -3.54481 q^{16} -5.56908 q^{17} -17.0926 q^{18} +1.58477 q^{19} -9.08712 q^{20} -10.0377 q^{22} +5.20345 q^{23} -1.42454 q^{24} +11.9636 q^{25} +5.88332 q^{26} +17.9577 q^{27} -3.57024 q^{29} +28.4382 q^{30} -2.12419 q^{31} +8.11642 q^{32} +16.4769 q^{33} +11.4218 q^{34} +18.3876 q^{36} +4.01087 q^{37} -3.25026 q^{38} -9.65750 q^{39} +1.74277 q^{40} +5.33687 q^{41} -4.34649 q^{43} +10.7982 q^{44} -34.3254 q^{45} -10.6719 q^{46} +3.84000 q^{47} -11.9340 q^{48} -24.5365 q^{50} -18.7489 q^{51} -6.32906 q^{52} +2.13965 q^{53} -36.8300 q^{54} -20.1577 q^{55} +5.33531 q^{57} +7.32232 q^{58} +1.95069 q^{59} -30.5928 q^{60} -12.9121 q^{61} +4.35656 q^{62} -9.55660 q^{64} +11.8149 q^{65} -33.7930 q^{66} +11.8370 q^{67} -12.2871 q^{68} +17.5180 q^{69} -4.52622 q^{71} -3.52645 q^{72} -8.76529 q^{73} -8.22601 q^{74} +40.2767 q^{75} +3.49651 q^{76} +19.8069 q^{78} +12.4735 q^{79} +14.5999 q^{80} +35.4544 q^{81} -10.9456 q^{82} -7.89568 q^{83} +22.9373 q^{85} +8.91434 q^{86} -12.0196 q^{87} -2.07092 q^{88} +0.492530 q^{89} +70.3990 q^{90} +11.4804 q^{92} -7.15130 q^{93} -7.87557 q^{94} -6.52719 q^{95} +27.3248 q^{96} -1.80138 q^{97} +40.7887 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 74 q + 18 q^{2} + 86 q^{4} + 54 q^{8} + 114 q^{9} + 28 q^{11} + 32 q^{15} + 118 q^{16} + 54 q^{18} + 20 q^{22} + 64 q^{23} + 130 q^{25} + 36 q^{29} + 68 q^{30} + 146 q^{32} + 162 q^{36} + 48 q^{37} + 24 q^{39}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.05093 −1.45023 −0.725113 0.688630i \(-0.758213\pi\)
−0.725113 + 0.688630i \(0.758213\pi\)
\(3\) 3.36661 1.94371 0.971856 0.235574i \(-0.0756969\pi\)
0.971856 + 0.235574i \(0.0756969\pi\)
\(4\) 2.20631 1.10316
\(5\) −4.11869 −1.84193 −0.920967 0.389641i \(-0.872599\pi\)
−0.920967 + 0.389641i \(0.872599\pi\)
\(6\) −6.90468 −2.81882
\(7\) 0 0
\(8\) −0.423137 −0.149601
\(9\) 8.33406 2.77802
\(10\) 8.44714 2.67122
\(11\) 4.89422 1.47566 0.737831 0.674986i \(-0.235850\pi\)
0.737831 + 0.674986i \(0.235850\pi\)
\(12\) 7.42780 2.14422
\(13\) −2.86861 −0.795610 −0.397805 0.917470i \(-0.630228\pi\)
−0.397805 + 0.917470i \(0.630228\pi\)
\(14\) 0 0
\(15\) −13.8660 −3.58019
\(16\) −3.54481 −0.886201
\(17\) −5.56908 −1.35070 −0.675350 0.737497i \(-0.736007\pi\)
−0.675350 + 0.737497i \(0.736007\pi\)
\(18\) −17.0926 −4.02876
\(19\) 1.58477 0.363572 0.181786 0.983338i \(-0.441812\pi\)
0.181786 + 0.983338i \(0.441812\pi\)
\(20\) −9.08712 −2.03194
\(21\) 0 0
\(22\) −10.0377 −2.14004
\(23\) 5.20345 1.08499 0.542497 0.840058i \(-0.317479\pi\)
0.542497 + 0.840058i \(0.317479\pi\)
\(24\) −1.42454 −0.290782
\(25\) 11.9636 2.39272
\(26\) 5.88332 1.15381
\(27\) 17.9577 3.45596
\(28\) 0 0
\(29\) −3.57024 −0.662977 −0.331489 0.943459i \(-0.607551\pi\)
−0.331489 + 0.943459i \(0.607551\pi\)
\(30\) 28.4382 5.19209
\(31\) −2.12419 −0.381515 −0.190758 0.981637i \(-0.561094\pi\)
−0.190758 + 0.981637i \(0.561094\pi\)
\(32\) 8.11642 1.43479
\(33\) 16.4769 2.86826
\(34\) 11.4218 1.95882
\(35\) 0 0
\(36\) 18.3876 3.06459
\(37\) 4.01087 0.659383 0.329691 0.944089i \(-0.393055\pi\)
0.329691 + 0.944089i \(0.393055\pi\)
\(38\) −3.25026 −0.527262
\(39\) −9.65750 −1.54644
\(40\) 1.74277 0.275556
\(41\) 5.33687 0.833479 0.416740 0.909026i \(-0.363173\pi\)
0.416740 + 0.909026i \(0.363173\pi\)
\(42\) 0 0
\(43\) −4.34649 −0.662833 −0.331417 0.943485i \(-0.607527\pi\)
−0.331417 + 0.943485i \(0.607527\pi\)
\(44\) 10.7982 1.62789
\(45\) −34.3254 −5.11693
\(46\) −10.6719 −1.57349
\(47\) 3.84000 0.560121 0.280061 0.959982i \(-0.409645\pi\)
0.280061 + 0.959982i \(0.409645\pi\)
\(48\) −11.9340 −1.72252
\(49\) 0 0
\(50\) −24.5365 −3.46998
\(51\) −18.7489 −2.62537
\(52\) −6.32906 −0.877683
\(53\) 2.13965 0.293904 0.146952 0.989144i \(-0.453054\pi\)
0.146952 + 0.989144i \(0.453054\pi\)
\(54\) −36.8300 −5.01193
\(55\) −20.1577 −2.71807
\(56\) 0 0
\(57\) 5.33531 0.706679
\(58\) 7.32232 0.961467
\(59\) 1.95069 0.253958 0.126979 0.991905i \(-0.459472\pi\)
0.126979 + 0.991905i \(0.459472\pi\)
\(60\) −30.5928 −3.94951
\(61\) −12.9121 −1.65323 −0.826614 0.562770i \(-0.809736\pi\)
−0.826614 + 0.562770i \(0.809736\pi\)
\(62\) 4.35656 0.553283
\(63\) 0 0
\(64\) −9.55660 −1.19458
\(65\) 11.8149 1.46546
\(66\) −33.7930 −4.15963
\(67\) 11.8370 1.44612 0.723062 0.690783i \(-0.242734\pi\)
0.723062 + 0.690783i \(0.242734\pi\)
\(68\) −12.2871 −1.49003
\(69\) 17.5180 2.10892
\(70\) 0 0
\(71\) −4.52622 −0.537163 −0.268581 0.963257i \(-0.586555\pi\)
−0.268581 + 0.963257i \(0.586555\pi\)
\(72\) −3.52645 −0.415596
\(73\) −8.76529 −1.02590 −0.512950 0.858419i \(-0.671447\pi\)
−0.512950 + 0.858419i \(0.671447\pi\)
\(74\) −8.22601 −0.956254
\(75\) 40.2767 4.65076
\(76\) 3.49651 0.401077
\(77\) 0 0
\(78\) 19.8069 2.24268
\(79\) 12.4735 1.40337 0.701687 0.712485i \(-0.252430\pi\)
0.701687 + 0.712485i \(0.252430\pi\)
\(80\) 14.5999 1.63232
\(81\) 35.4544 3.93937
\(82\) −10.9456 −1.20873
\(83\) −7.89568 −0.866664 −0.433332 0.901234i \(-0.642662\pi\)
−0.433332 + 0.901234i \(0.642662\pi\)
\(84\) 0 0
\(85\) 22.9373 2.48790
\(86\) 8.91434 0.961258
\(87\) −12.0196 −1.28864
\(88\) −2.07092 −0.220761
\(89\) 0.492530 0.0522081 0.0261040 0.999659i \(-0.491690\pi\)
0.0261040 + 0.999659i \(0.491690\pi\)
\(90\) 70.3990 7.42070
\(91\) 0 0
\(92\) 11.4804 1.19692
\(93\) −7.15130 −0.741556
\(94\) −7.87557 −0.812303
\(95\) −6.52719 −0.669675
\(96\) 27.3248 2.78883
\(97\) −1.80138 −0.182903 −0.0914514 0.995810i \(-0.529151\pi\)
−0.0914514 + 0.995810i \(0.529151\pi\)
\(98\) 0 0
\(99\) 40.7887 4.09942
\(100\) 26.3954 2.63954
\(101\) 14.7763 1.47030 0.735150 0.677904i \(-0.237111\pi\)
0.735150 + 0.677904i \(0.237111\pi\)
\(102\) 38.4527 3.80739
\(103\) −6.30141 −0.620897 −0.310448 0.950590i \(-0.600479\pi\)
−0.310448 + 0.950590i \(0.600479\pi\)
\(104\) 1.21382 0.119024
\(105\) 0 0
\(106\) −4.38827 −0.426227
\(107\) −11.5285 −1.11450 −0.557249 0.830345i \(-0.688143\pi\)
−0.557249 + 0.830345i \(0.688143\pi\)
\(108\) 39.6203 3.81247
\(109\) −12.1560 −1.16433 −0.582167 0.813069i \(-0.697795\pi\)
−0.582167 + 0.813069i \(0.697795\pi\)
\(110\) 41.3421 3.94182
\(111\) 13.5030 1.28165
\(112\) 0 0
\(113\) 16.4357 1.54614 0.773072 0.634318i \(-0.218719\pi\)
0.773072 + 0.634318i \(0.218719\pi\)
\(114\) −10.9424 −1.02485
\(115\) −21.4314 −1.99849
\(116\) −7.87708 −0.731368
\(117\) −23.9072 −2.21022
\(118\) −4.00073 −0.368297
\(119\) 0 0
\(120\) 5.86722 0.535601
\(121\) 12.9533 1.17758
\(122\) 26.4819 2.39755
\(123\) 17.9672 1.62004
\(124\) −4.68662 −0.420871
\(125\) −28.6809 −2.56529
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) 3.36708 0.297611
\(129\) −14.6329 −1.28836
\(130\) −24.2316 −2.12525
\(131\) 5.80520 0.507202 0.253601 0.967309i \(-0.418385\pi\)
0.253601 + 0.967309i \(0.418385\pi\)
\(132\) 36.3532 3.16414
\(133\) 0 0
\(134\) −24.2769 −2.09721
\(135\) −73.9621 −6.36565
\(136\) 2.35648 0.202067
\(137\) 19.9322 1.70293 0.851463 0.524414i \(-0.175716\pi\)
0.851463 + 0.524414i \(0.175716\pi\)
\(138\) −35.9282 −3.05841
\(139\) 11.7412 0.995875 0.497937 0.867213i \(-0.334091\pi\)
0.497937 + 0.867213i \(0.334091\pi\)
\(140\) 0 0
\(141\) 12.9278 1.08872
\(142\) 9.28295 0.779008
\(143\) −14.0396 −1.17405
\(144\) −29.5426 −2.46188
\(145\) 14.7047 1.22116
\(146\) 17.9770 1.48779
\(147\) 0 0
\(148\) 8.84924 0.727403
\(149\) 18.6037 1.52407 0.762036 0.647535i \(-0.224200\pi\)
0.762036 + 0.647535i \(0.224200\pi\)
\(150\) −82.6048 −6.74465
\(151\) −17.4023 −1.41618 −0.708088 0.706125i \(-0.750442\pi\)
−0.708088 + 0.706125i \(0.750442\pi\)
\(152\) −0.670576 −0.0543909
\(153\) −46.4130 −3.75227
\(154\) 0 0
\(155\) 8.74886 0.702725
\(156\) −21.3075 −1.70596
\(157\) 4.94866 0.394946 0.197473 0.980308i \(-0.436726\pi\)
0.197473 + 0.980308i \(0.436726\pi\)
\(158\) −25.5822 −2.03521
\(159\) 7.20337 0.571264
\(160\) −33.4290 −2.64280
\(161\) 0 0
\(162\) −72.7144 −5.71299
\(163\) 14.9866 1.17384 0.586919 0.809646i \(-0.300341\pi\)
0.586919 + 0.809646i \(0.300341\pi\)
\(164\) 11.7748 0.919459
\(165\) −67.8633 −5.28315
\(166\) 16.1935 1.25686
\(167\) −1.48923 −0.115240 −0.0576200 0.998339i \(-0.518351\pi\)
−0.0576200 + 0.998339i \(0.518351\pi\)
\(168\) 0 0
\(169\) −4.77106 −0.367005
\(170\) −47.0428 −3.60802
\(171\) 13.2076 1.01001
\(172\) −9.58972 −0.731209
\(173\) 21.8498 1.66121 0.830603 0.556864i \(-0.187996\pi\)
0.830603 + 0.556864i \(0.187996\pi\)
\(174\) 24.6514 1.86882
\(175\) 0 0
\(176\) −17.3490 −1.30773
\(177\) 6.56721 0.493621
\(178\) −1.01014 −0.0757135
\(179\) 14.8249 1.10806 0.554031 0.832496i \(-0.313089\pi\)
0.554031 + 0.832496i \(0.313089\pi\)
\(180\) −75.7326 −5.64478
\(181\) 10.6273 0.789919 0.394960 0.918699i \(-0.370759\pi\)
0.394960 + 0.918699i \(0.370759\pi\)
\(182\) 0 0
\(183\) −43.4701 −3.21340
\(184\) −2.20177 −0.162317
\(185\) −16.5195 −1.21454
\(186\) 14.6668 1.07542
\(187\) −27.2563 −1.99318
\(188\) 8.47224 0.617902
\(189\) 0 0
\(190\) 13.3868 0.971181
\(191\) −1.42657 −0.103223 −0.0516114 0.998667i \(-0.516436\pi\)
−0.0516114 + 0.998667i \(0.516436\pi\)
\(192\) −32.1734 −2.32191
\(193\) −11.8975 −0.856400 −0.428200 0.903684i \(-0.640852\pi\)
−0.428200 + 0.903684i \(0.640852\pi\)
\(194\) 3.69451 0.265250
\(195\) 39.7762 2.84843
\(196\) 0 0
\(197\) −2.27786 −0.162291 −0.0811453 0.996702i \(-0.525858\pi\)
−0.0811453 + 0.996702i \(0.525858\pi\)
\(198\) −83.6547 −5.94508
\(199\) 19.6158 1.39053 0.695265 0.718753i \(-0.255287\pi\)
0.695265 + 0.718753i \(0.255287\pi\)
\(200\) −5.06223 −0.357954
\(201\) 39.8507 2.81085
\(202\) −30.3052 −2.13227
\(203\) 0 0
\(204\) −41.3660 −2.89620
\(205\) −21.9809 −1.53521
\(206\) 12.9238 0.900441
\(207\) 43.3659 3.01414
\(208\) 10.1687 0.705071
\(209\) 7.75622 0.536509
\(210\) 0 0
\(211\) −11.5484 −0.795023 −0.397511 0.917597i \(-0.630126\pi\)
−0.397511 + 0.917597i \(0.630126\pi\)
\(212\) 4.72074 0.324222
\(213\) −15.2380 −1.04409
\(214\) 23.6441 1.61628
\(215\) 17.9018 1.22089
\(216\) −7.59856 −0.517016
\(217\) 0 0
\(218\) 24.9311 1.68855
\(219\) −29.5093 −1.99405
\(220\) −44.4743 −2.99846
\(221\) 15.9755 1.07463
\(222\) −27.6938 −1.85868
\(223\) −6.93950 −0.464703 −0.232352 0.972632i \(-0.574642\pi\)
−0.232352 + 0.972632i \(0.574642\pi\)
\(224\) 0 0
\(225\) 99.7053 6.64702
\(226\) −33.7086 −2.24226
\(227\) 9.02761 0.599184 0.299592 0.954067i \(-0.403150\pi\)
0.299592 + 0.954067i \(0.403150\pi\)
\(228\) 11.7714 0.779579
\(229\) −24.8645 −1.64309 −0.821547 0.570141i \(-0.806889\pi\)
−0.821547 + 0.570141i \(0.806889\pi\)
\(230\) 43.9543 2.89826
\(231\) 0 0
\(232\) 1.51070 0.0991823
\(233\) −11.6893 −0.765794 −0.382897 0.923791i \(-0.625074\pi\)
−0.382897 + 0.923791i \(0.625074\pi\)
\(234\) 49.0320 3.20532
\(235\) −15.8158 −1.03171
\(236\) 4.30383 0.280156
\(237\) 41.9933 2.72776
\(238\) 0 0
\(239\) −17.9805 −1.16306 −0.581531 0.813524i \(-0.697546\pi\)
−0.581531 + 0.813524i \(0.697546\pi\)
\(240\) 49.1523 3.17277
\(241\) −5.37930 −0.346511 −0.173256 0.984877i \(-0.555429\pi\)
−0.173256 + 0.984877i \(0.555429\pi\)
\(242\) −26.5664 −1.70775
\(243\) 65.4879 4.20105
\(244\) −28.4882 −1.82377
\(245\) 0 0
\(246\) −36.8494 −2.34943
\(247\) −4.54610 −0.289261
\(248\) 0.898821 0.0570752
\(249\) −26.5817 −1.68455
\(250\) 58.8224 3.72026
\(251\) 11.6135 0.733039 0.366520 0.930410i \(-0.380549\pi\)
0.366520 + 0.930410i \(0.380549\pi\)
\(252\) 0 0
\(253\) 25.4668 1.60108
\(254\) −2.05093 −0.128687
\(255\) 77.2209 4.83576
\(256\) 12.2076 0.762972
\(257\) 13.1919 0.822887 0.411444 0.911435i \(-0.365025\pi\)
0.411444 + 0.911435i \(0.365025\pi\)
\(258\) 30.0111 1.86841
\(259\) 0 0
\(260\) 26.0674 1.61663
\(261\) −29.7546 −1.84176
\(262\) −11.9061 −0.735558
\(263\) 21.8413 1.34679 0.673396 0.739282i \(-0.264835\pi\)
0.673396 + 0.739282i \(0.264835\pi\)
\(264\) −6.97199 −0.429096
\(265\) −8.81255 −0.541351
\(266\) 0 0
\(267\) 1.65816 0.101477
\(268\) 26.1162 1.59530
\(269\) −4.39470 −0.267950 −0.133975 0.990985i \(-0.542774\pi\)
−0.133975 + 0.990985i \(0.542774\pi\)
\(270\) 151.691 9.23163
\(271\) −4.66803 −0.283563 −0.141781 0.989898i \(-0.545283\pi\)
−0.141781 + 0.989898i \(0.545283\pi\)
\(272\) 19.7413 1.19699
\(273\) 0 0
\(274\) −40.8796 −2.46963
\(275\) 58.5524 3.53084
\(276\) 38.6502 2.32647
\(277\) 2.38523 0.143314 0.0716572 0.997429i \(-0.477171\pi\)
0.0716572 + 0.997429i \(0.477171\pi\)
\(278\) −24.0804 −1.44424
\(279\) −17.7031 −1.05986
\(280\) 0 0
\(281\) −22.7315 −1.35605 −0.678025 0.735039i \(-0.737164\pi\)
−0.678025 + 0.735039i \(0.737164\pi\)
\(282\) −26.5140 −1.57888
\(283\) 31.7184 1.88547 0.942733 0.333548i \(-0.108246\pi\)
0.942733 + 0.333548i \(0.108246\pi\)
\(284\) −9.98625 −0.592575
\(285\) −21.9745 −1.30166
\(286\) 28.7943 1.70264
\(287\) 0 0
\(288\) 67.6427 3.98589
\(289\) 14.0146 0.824390
\(290\) −30.1583 −1.77096
\(291\) −6.06455 −0.355510
\(292\) −19.3390 −1.13173
\(293\) 2.45935 0.143677 0.0718384 0.997416i \(-0.477113\pi\)
0.0718384 + 0.997416i \(0.477113\pi\)
\(294\) 0 0
\(295\) −8.03428 −0.467774
\(296\) −1.69715 −0.0986446
\(297\) 87.8888 5.09983
\(298\) −38.1548 −2.21025
\(299\) −14.9267 −0.863232
\(300\) 88.8632 5.13052
\(301\) 0 0
\(302\) 35.6908 2.05378
\(303\) 49.7462 2.85784
\(304\) −5.61771 −0.322198
\(305\) 53.1810 3.04513
\(306\) 95.1899 5.44164
\(307\) −6.17340 −0.352335 −0.176167 0.984360i \(-0.556370\pi\)
−0.176167 + 0.984360i \(0.556370\pi\)
\(308\) 0 0
\(309\) −21.2144 −1.20684
\(310\) −17.9433 −1.01911
\(311\) 9.43715 0.535131 0.267566 0.963540i \(-0.413781\pi\)
0.267566 + 0.963540i \(0.413781\pi\)
\(312\) 4.08644 0.231349
\(313\) 1.60837 0.0909104 0.0454552 0.998966i \(-0.485526\pi\)
0.0454552 + 0.998966i \(0.485526\pi\)
\(314\) −10.1494 −0.572762
\(315\) 0 0
\(316\) 27.5204 1.54814
\(317\) −8.77562 −0.492888 −0.246444 0.969157i \(-0.579262\pi\)
−0.246444 + 0.969157i \(0.579262\pi\)
\(318\) −14.7736 −0.828462
\(319\) −17.4735 −0.978330
\(320\) 39.3607 2.20033
\(321\) −38.8118 −2.16627
\(322\) 0 0
\(323\) −8.82573 −0.491077
\(324\) 78.2235 4.34575
\(325\) −34.3189 −1.90367
\(326\) −30.7364 −1.70233
\(327\) −40.9245 −2.26313
\(328\) −2.25823 −0.124690
\(329\) 0 0
\(330\) 139.183 7.66176
\(331\) 16.4521 0.904289 0.452145 0.891945i \(-0.350659\pi\)
0.452145 + 0.891945i \(0.350659\pi\)
\(332\) −17.4204 −0.956066
\(333\) 33.4268 1.83178
\(334\) 3.05430 0.167124
\(335\) −48.7531 −2.66366
\(336\) 0 0
\(337\) 26.1327 1.42354 0.711770 0.702413i \(-0.247894\pi\)
0.711770 + 0.702413i \(0.247894\pi\)
\(338\) 9.78511 0.532240
\(339\) 55.3327 3.00526
\(340\) 50.6069 2.74454
\(341\) −10.3962 −0.562987
\(342\) −27.0879 −1.46474
\(343\) 0 0
\(344\) 1.83916 0.0991608
\(345\) −72.1511 −3.88448
\(346\) −44.8123 −2.40913
\(347\) 2.69696 0.144781 0.0723903 0.997376i \(-0.476937\pi\)
0.0723903 + 0.997376i \(0.476937\pi\)
\(348\) −26.5190 −1.42157
\(349\) 13.7988 0.738634 0.369317 0.929303i \(-0.379592\pi\)
0.369317 + 0.929303i \(0.379592\pi\)
\(350\) 0 0
\(351\) −51.5137 −2.74960
\(352\) 39.7235 2.11727
\(353\) −2.35503 −0.125346 −0.0626728 0.998034i \(-0.519962\pi\)
−0.0626728 + 0.998034i \(0.519962\pi\)
\(354\) −13.4689 −0.715863
\(355\) 18.6421 0.989418
\(356\) 1.08668 0.0575937
\(357\) 0 0
\(358\) −30.4048 −1.60694
\(359\) 7.45264 0.393335 0.196668 0.980470i \(-0.436988\pi\)
0.196668 + 0.980470i \(0.436988\pi\)
\(360\) 14.5243 0.765499
\(361\) −16.4885 −0.867815
\(362\) −21.7958 −1.14556
\(363\) 43.6088 2.28887
\(364\) 0 0
\(365\) 36.1015 1.88964
\(366\) 89.1541 4.66016
\(367\) 23.1277 1.20725 0.603627 0.797267i \(-0.293721\pi\)
0.603627 + 0.797267i \(0.293721\pi\)
\(368\) −18.4452 −0.961523
\(369\) 44.4778 2.31542
\(370\) 33.8804 1.76136
\(371\) 0 0
\(372\) −15.7780 −0.818053
\(373\) −0.199225 −0.0103155 −0.00515775 0.999987i \(-0.501642\pi\)
−0.00515775 + 0.999987i \(0.501642\pi\)
\(374\) 55.9007 2.89056
\(375\) −96.5572 −4.98619
\(376\) −1.62484 −0.0837949
\(377\) 10.2416 0.527471
\(378\) 0 0
\(379\) −22.0311 −1.13166 −0.565830 0.824522i \(-0.691444\pi\)
−0.565830 + 0.824522i \(0.691444\pi\)
\(380\) −14.4010 −0.738757
\(381\) 3.36661 0.172477
\(382\) 2.92579 0.149697
\(383\) −30.0986 −1.53797 −0.768983 0.639269i \(-0.779237\pi\)
−0.768983 + 0.639269i \(0.779237\pi\)
\(384\) 11.3357 0.578470
\(385\) 0 0
\(386\) 24.4009 1.24197
\(387\) −36.2239 −1.84136
\(388\) −3.97442 −0.201770
\(389\) 31.1697 1.58037 0.790184 0.612869i \(-0.209985\pi\)
0.790184 + 0.612869i \(0.209985\pi\)
\(390\) −81.5783 −4.13088
\(391\) −28.9784 −1.46550
\(392\) 0 0
\(393\) 19.5438 0.985856
\(394\) 4.67173 0.235358
\(395\) −51.3743 −2.58492
\(396\) 89.9927 4.52230
\(397\) 22.8555 1.14709 0.573543 0.819176i \(-0.305569\pi\)
0.573543 + 0.819176i \(0.305569\pi\)
\(398\) −40.2307 −2.01658
\(399\) 0 0
\(400\) −42.4086 −2.12043
\(401\) 10.3378 0.516244 0.258122 0.966112i \(-0.416896\pi\)
0.258122 + 0.966112i \(0.416896\pi\)
\(402\) −81.7310 −4.07637
\(403\) 6.09347 0.303537
\(404\) 32.6013 1.62197
\(405\) −146.025 −7.25607
\(406\) 0 0
\(407\) 19.6301 0.973026
\(408\) 7.93335 0.392759
\(409\) −12.9534 −0.640505 −0.320253 0.947332i \(-0.603768\pi\)
−0.320253 + 0.947332i \(0.603768\pi\)
\(410\) 45.0813 2.22641
\(411\) 67.1041 3.31000
\(412\) −13.9029 −0.684946
\(413\) 0 0
\(414\) −88.9403 −4.37118
\(415\) 32.5198 1.59634
\(416\) −23.2829 −1.14154
\(417\) 39.5280 1.93569
\(418\) −15.9075 −0.778060
\(419\) −32.7486 −1.59987 −0.799937 0.600085i \(-0.795134\pi\)
−0.799937 + 0.600085i \(0.795134\pi\)
\(420\) 0 0
\(421\) −29.9675 −1.46053 −0.730264 0.683165i \(-0.760603\pi\)
−0.730264 + 0.683165i \(0.760603\pi\)
\(422\) 23.6849 1.15296
\(423\) 32.0028 1.55603
\(424\) −0.905364 −0.0439684
\(425\) −66.6262 −3.23184
\(426\) 31.2521 1.51417
\(427\) 0 0
\(428\) −25.4354 −1.22947
\(429\) −47.2659 −2.28202
\(430\) −36.7154 −1.77057
\(431\) 35.9923 1.73369 0.866843 0.498581i \(-0.166145\pi\)
0.866843 + 0.498581i \(0.166145\pi\)
\(432\) −63.6565 −3.06268
\(433\) 6.31077 0.303276 0.151638 0.988436i \(-0.451545\pi\)
0.151638 + 0.988436i \(0.451545\pi\)
\(434\) 0 0
\(435\) 49.5050 2.37358
\(436\) −26.8200 −1.28444
\(437\) 8.24629 0.394473
\(438\) 60.5215 2.89183
\(439\) 7.65105 0.365165 0.182582 0.983191i \(-0.441554\pi\)
0.182582 + 0.983191i \(0.441554\pi\)
\(440\) 8.52948 0.406627
\(441\) 0 0
\(442\) −32.7647 −1.55846
\(443\) −7.36887 −0.350106 −0.175053 0.984559i \(-0.556010\pi\)
−0.175053 + 0.984559i \(0.556010\pi\)
\(444\) 29.7919 1.41386
\(445\) −2.02858 −0.0961638
\(446\) 14.2324 0.673925
\(447\) 62.6313 2.96236
\(448\) 0 0
\(449\) 26.4113 1.24643 0.623213 0.782052i \(-0.285827\pi\)
0.623213 + 0.782052i \(0.285827\pi\)
\(450\) −204.489 −9.63968
\(451\) 26.1198 1.22993
\(452\) 36.2624 1.70564
\(453\) −58.5866 −2.75264
\(454\) −18.5150 −0.868952
\(455\) 0 0
\(456\) −2.25757 −0.105720
\(457\) 30.9520 1.44787 0.723937 0.689866i \(-0.242330\pi\)
0.723937 + 0.689866i \(0.242330\pi\)
\(458\) 50.9954 2.38286
\(459\) −100.008 −4.66797
\(460\) −47.2844 −2.20464
\(461\) 38.2261 1.78037 0.890183 0.455603i \(-0.150576\pi\)
0.890183 + 0.455603i \(0.150576\pi\)
\(462\) 0 0
\(463\) −23.0513 −1.07128 −0.535641 0.844446i \(-0.679930\pi\)
−0.535641 + 0.844446i \(0.679930\pi\)
\(464\) 12.6558 0.587531
\(465\) 29.4540 1.36590
\(466\) 23.9740 1.11058
\(467\) 32.8437 1.51982 0.759912 0.650026i \(-0.225242\pi\)
0.759912 + 0.650026i \(0.225242\pi\)
\(468\) −52.7468 −2.43822
\(469\) 0 0
\(470\) 32.4370 1.49621
\(471\) 16.6602 0.767662
\(472\) −0.825408 −0.0379925
\(473\) −21.2726 −0.978117
\(474\) −86.1253 −3.95587
\(475\) 18.9596 0.869925
\(476\) 0 0
\(477\) 17.8320 0.816470
\(478\) 36.8768 1.68670
\(479\) 16.4098 0.749784 0.374892 0.927068i \(-0.377680\pi\)
0.374892 + 0.927068i \(0.377680\pi\)
\(480\) −112.542 −5.13683
\(481\) −11.5056 −0.524612
\(482\) 11.0326 0.502520
\(483\) 0 0
\(484\) 28.5791 1.29905
\(485\) 7.41933 0.336895
\(486\) −134.311 −6.09248
\(487\) 12.2478 0.555000 0.277500 0.960726i \(-0.410494\pi\)
0.277500 + 0.960726i \(0.410494\pi\)
\(488\) 5.46359 0.247325
\(489\) 50.4539 2.28160
\(490\) 0 0
\(491\) −3.67455 −0.165830 −0.0829151 0.996557i \(-0.526423\pi\)
−0.0829151 + 0.996557i \(0.526423\pi\)
\(492\) 39.6412 1.78716
\(493\) 19.8830 0.895483
\(494\) 9.32373 0.419495
\(495\) −167.996 −7.55085
\(496\) 7.52983 0.338099
\(497\) 0 0
\(498\) 54.5172 2.44297
\(499\) −33.8264 −1.51428 −0.757140 0.653253i \(-0.773404\pi\)
−0.757140 + 0.653253i \(0.773404\pi\)
\(500\) −63.2790 −2.82992
\(501\) −5.01365 −0.223993
\(502\) −23.8185 −1.06307
\(503\) 14.7656 0.658364 0.329182 0.944266i \(-0.393227\pi\)
0.329182 + 0.944266i \(0.393227\pi\)
\(504\) 0 0
\(505\) −60.8591 −2.70820
\(506\) −52.2306 −2.32193
\(507\) −16.0623 −0.713352
\(508\) 2.20631 0.0978894
\(509\) −22.8105 −1.01106 −0.505529 0.862810i \(-0.668703\pi\)
−0.505529 + 0.862810i \(0.668703\pi\)
\(510\) −158.375 −7.01295
\(511\) 0 0
\(512\) −31.7710 −1.40409
\(513\) 28.4589 1.25649
\(514\) −27.0556 −1.19337
\(515\) 25.9535 1.14365
\(516\) −32.2848 −1.42126
\(517\) 18.7938 0.826549
\(518\) 0 0
\(519\) 73.5596 3.22891
\(520\) −4.99933 −0.219235
\(521\) 34.5325 1.51289 0.756447 0.654055i \(-0.226933\pi\)
0.756447 + 0.654055i \(0.226933\pi\)
\(522\) 61.0246 2.67098
\(523\) −4.62166 −0.202091 −0.101045 0.994882i \(-0.532219\pi\)
−0.101045 + 0.994882i \(0.532219\pi\)
\(524\) 12.8081 0.559524
\(525\) 0 0
\(526\) −44.7950 −1.95315
\(527\) 11.8298 0.515312
\(528\) −58.4074 −2.54186
\(529\) 4.07588 0.177212
\(530\) 18.0739 0.785081
\(531\) 16.2572 0.705500
\(532\) 0 0
\(533\) −15.3094 −0.663125
\(534\) −3.40076 −0.147165
\(535\) 47.4821 2.05283
\(536\) −5.00868 −0.216342
\(537\) 49.9095 2.15376
\(538\) 9.01322 0.388588
\(539\) 0 0
\(540\) −163.184 −7.02231
\(541\) 9.91005 0.426066 0.213033 0.977045i \(-0.431666\pi\)
0.213033 + 0.977045i \(0.431666\pi\)
\(542\) 9.57381 0.411230
\(543\) 35.7779 1.53538
\(544\) −45.2010 −1.93798
\(545\) 50.0668 2.14462
\(546\) 0 0
\(547\) 0.114979 0.00491615 0.00245807 0.999997i \(-0.499218\pi\)
0.00245807 + 0.999997i \(0.499218\pi\)
\(548\) 43.9768 1.87860
\(549\) −107.610 −4.59270
\(550\) −120.087 −5.12052
\(551\) −5.65802 −0.241040
\(552\) −7.41250 −0.315497
\(553\) 0 0
\(554\) −4.89193 −0.207838
\(555\) −55.6148 −2.36072
\(556\) 25.9048 1.09861
\(557\) 2.37326 0.100558 0.0502791 0.998735i \(-0.483989\pi\)
0.0502791 + 0.998735i \(0.483989\pi\)
\(558\) 36.3078 1.53703
\(559\) 12.4684 0.527357
\(560\) 0 0
\(561\) −91.7612 −3.87416
\(562\) 46.6208 1.96658
\(563\) −2.63294 −0.110965 −0.0554825 0.998460i \(-0.517670\pi\)
−0.0554825 + 0.998460i \(0.517670\pi\)
\(564\) 28.5227 1.20102
\(565\) −67.6937 −2.84790
\(566\) −65.0523 −2.73435
\(567\) 0 0
\(568\) 1.91521 0.0803603
\(569\) −21.7705 −0.912666 −0.456333 0.889809i \(-0.650837\pi\)
−0.456333 + 0.889809i \(0.650837\pi\)
\(570\) 45.0681 1.88770
\(571\) 37.3131 1.56151 0.780753 0.624840i \(-0.214836\pi\)
0.780753 + 0.624840i \(0.214836\pi\)
\(572\) −30.9758 −1.29516
\(573\) −4.80270 −0.200636
\(574\) 0 0
\(575\) 62.2519 2.59608
\(576\) −79.6453 −3.31855
\(577\) 8.99963 0.374659 0.187330 0.982297i \(-0.440017\pi\)
0.187330 + 0.982297i \(0.440017\pi\)
\(578\) −28.7430 −1.19555
\(579\) −40.0542 −1.66460
\(580\) 32.4432 1.34713
\(581\) 0 0
\(582\) 12.4380 0.515571
\(583\) 10.4719 0.433702
\(584\) 3.70891 0.153476
\(585\) 98.4663 4.07108
\(586\) −5.04395 −0.208364
\(587\) 31.7546 1.31065 0.655326 0.755346i \(-0.272531\pi\)
0.655326 + 0.755346i \(0.272531\pi\)
\(588\) 0 0
\(589\) −3.36635 −0.138708
\(590\) 16.4777 0.678378
\(591\) −7.66866 −0.315446
\(592\) −14.2177 −0.584346
\(593\) 39.5540 1.62429 0.812144 0.583456i \(-0.198300\pi\)
0.812144 + 0.583456i \(0.198300\pi\)
\(594\) −180.254 −7.39591
\(595\) 0 0
\(596\) 41.0455 1.68129
\(597\) 66.0389 2.70279
\(598\) 30.6136 1.25188
\(599\) −30.0971 −1.22974 −0.614868 0.788630i \(-0.710791\pi\)
−0.614868 + 0.788630i \(0.710791\pi\)
\(600\) −17.0426 −0.695760
\(601\) 9.05936 0.369539 0.184769 0.982782i \(-0.440846\pi\)
0.184769 + 0.982782i \(0.440846\pi\)
\(602\) 0 0
\(603\) 98.6506 4.01736
\(604\) −38.3948 −1.56226
\(605\) −53.3508 −2.16902
\(606\) −102.026 −4.14452
\(607\) −13.5579 −0.550300 −0.275150 0.961401i \(-0.588727\pi\)
−0.275150 + 0.961401i \(0.588727\pi\)
\(608\) 12.8627 0.521651
\(609\) 0 0
\(610\) −109.070 −4.41614
\(611\) −11.0155 −0.445638
\(612\) −102.402 −4.13935
\(613\) 4.60692 0.186072 0.0930358 0.995663i \(-0.470343\pi\)
0.0930358 + 0.995663i \(0.470343\pi\)
\(614\) 12.6612 0.510965
\(615\) −74.0012 −2.98401
\(616\) 0 0
\(617\) 27.2211 1.09588 0.547940 0.836518i \(-0.315412\pi\)
0.547940 + 0.836518i \(0.315412\pi\)
\(618\) 43.5092 1.75020
\(619\) −28.4442 −1.14327 −0.571634 0.820509i \(-0.693690\pi\)
−0.571634 + 0.820509i \(0.693690\pi\)
\(620\) 19.3027 0.775216
\(621\) 93.4419 3.74970
\(622\) −19.3549 −0.776062
\(623\) 0 0
\(624\) 34.2340 1.37045
\(625\) 58.3095 2.33238
\(626\) −3.29865 −0.131841
\(627\) 26.1122 1.04282
\(628\) 10.9183 0.435688
\(629\) −22.3368 −0.890628
\(630\) 0 0
\(631\) 26.8998 1.07086 0.535431 0.844579i \(-0.320149\pi\)
0.535431 + 0.844579i \(0.320149\pi\)
\(632\) −5.27798 −0.209947
\(633\) −38.8789 −1.54530
\(634\) 17.9982 0.714799
\(635\) −4.11869 −0.163445
\(636\) 15.8929 0.630194
\(637\) 0 0
\(638\) 35.8370 1.41880
\(639\) −37.7218 −1.49225
\(640\) −13.8680 −0.548179
\(641\) −15.4637 −0.610778 −0.305389 0.952228i \(-0.598787\pi\)
−0.305389 + 0.952228i \(0.598787\pi\)
\(642\) 79.6004 3.14158
\(643\) 14.9711 0.590402 0.295201 0.955435i \(-0.404613\pi\)
0.295201 + 0.955435i \(0.404613\pi\)
\(644\) 0 0
\(645\) 60.2685 2.37307
\(646\) 18.1009 0.712172
\(647\) 25.3349 0.996019 0.498010 0.867172i \(-0.334064\pi\)
0.498010 + 0.867172i \(0.334064\pi\)
\(648\) −15.0020 −0.589336
\(649\) 9.54709 0.374756
\(650\) 70.3857 2.76075
\(651\) 0 0
\(652\) 33.0651 1.29493
\(653\) −9.66195 −0.378102 −0.189051 0.981967i \(-0.560541\pi\)
−0.189051 + 0.981967i \(0.560541\pi\)
\(654\) 83.9333 3.28205
\(655\) −23.9098 −0.934233
\(656\) −18.9182 −0.738631
\(657\) −73.0504 −2.84997
\(658\) 0 0
\(659\) 16.8558 0.656607 0.328304 0.944572i \(-0.393523\pi\)
0.328304 + 0.944572i \(0.393523\pi\)
\(660\) −149.728 −5.82814
\(661\) 25.5996 0.995709 0.497855 0.867261i \(-0.334121\pi\)
0.497855 + 0.867261i \(0.334121\pi\)
\(662\) −33.7421 −1.31142
\(663\) 53.7834 2.08877
\(664\) 3.34095 0.129654
\(665\) 0 0
\(666\) −68.5561 −2.65649
\(667\) −18.5776 −0.719326
\(668\) −3.28571 −0.127128
\(669\) −23.3626 −0.903249
\(670\) 99.9891 3.86292
\(671\) −63.1947 −2.43960
\(672\) 0 0
\(673\) −21.7472 −0.838292 −0.419146 0.907919i \(-0.637670\pi\)
−0.419146 + 0.907919i \(0.637670\pi\)
\(674\) −53.5964 −2.06446
\(675\) 214.839 8.26914
\(676\) −10.5265 −0.404864
\(677\) −14.6170 −0.561779 −0.280889 0.959740i \(-0.590629\pi\)
−0.280889 + 0.959740i \(0.590629\pi\)
\(678\) −113.484 −4.35831
\(679\) 0 0
\(680\) −9.70561 −0.372193
\(681\) 30.3924 1.16464
\(682\) 21.3219 0.816459
\(683\) −28.0331 −1.07266 −0.536328 0.844010i \(-0.680189\pi\)
−0.536328 + 0.844010i \(0.680189\pi\)
\(684\) 29.1401 1.11420
\(685\) −82.0947 −3.13668
\(686\) 0 0
\(687\) −83.7091 −3.19370
\(688\) 15.4075 0.587404
\(689\) −6.13783 −0.233833
\(690\) 147.977 5.63338
\(691\) −8.96411 −0.341011 −0.170505 0.985357i \(-0.554540\pi\)
−0.170505 + 0.985357i \(0.554540\pi\)
\(692\) 48.2075 1.83257
\(693\) 0 0
\(694\) −5.53129 −0.209965
\(695\) −48.3583 −1.83433
\(696\) 5.08594 0.192782
\(697\) −29.7215 −1.12578
\(698\) −28.3004 −1.07119
\(699\) −39.3535 −1.48848
\(700\) 0 0
\(701\) −38.4950 −1.45394 −0.726968 0.686672i \(-0.759071\pi\)
−0.726968 + 0.686672i \(0.759071\pi\)
\(702\) 105.651 3.98754
\(703\) 6.35632 0.239733
\(704\) −46.7721 −1.76279
\(705\) −53.2455 −2.00534
\(706\) 4.83000 0.181780
\(707\) 0 0
\(708\) 14.4893 0.544542
\(709\) −52.3540 −1.96620 −0.983098 0.183078i \(-0.941394\pi\)
−0.983098 + 0.183078i \(0.941394\pi\)
\(710\) −38.2336 −1.43488
\(711\) 103.955 3.89860
\(712\) −0.208407 −0.00781040
\(713\) −11.0531 −0.413942
\(714\) 0 0
\(715\) 57.8248 2.16252
\(716\) 32.7083 1.22237
\(717\) −60.5334 −2.26066
\(718\) −15.2848 −0.570425
\(719\) 44.2758 1.65121 0.825605 0.564249i \(-0.190834\pi\)
0.825605 + 0.564249i \(0.190834\pi\)
\(720\) 121.677 4.53463
\(721\) 0 0
\(722\) 33.8167 1.25853
\(723\) −18.1100 −0.673518
\(724\) 23.4471 0.871405
\(725\) −42.7129 −1.58632
\(726\) −89.4387 −3.31938
\(727\) 9.80050 0.363480 0.181740 0.983347i \(-0.441827\pi\)
0.181740 + 0.983347i \(0.441827\pi\)
\(728\) 0 0
\(729\) 114.109 4.22627
\(730\) −74.0416 −2.74040
\(731\) 24.2059 0.895289
\(732\) −95.9086 −3.54489
\(733\) 31.9796 1.18119 0.590597 0.806967i \(-0.298892\pi\)
0.590597 + 0.806967i \(0.298892\pi\)
\(734\) −47.4333 −1.75079
\(735\) 0 0
\(736\) 42.2334 1.55674
\(737\) 57.9330 2.13399
\(738\) −91.2209 −3.35789
\(739\) −20.7323 −0.762650 −0.381325 0.924441i \(-0.624532\pi\)
−0.381325 + 0.924441i \(0.624532\pi\)
\(740\) −36.4473 −1.33983
\(741\) −15.3049 −0.562241
\(742\) 0 0
\(743\) 15.1605 0.556186 0.278093 0.960554i \(-0.410298\pi\)
0.278093 + 0.960554i \(0.410298\pi\)
\(744\) 3.02598 0.110938
\(745\) −76.6227 −2.80724
\(746\) 0.408597 0.0149598
\(747\) −65.8031 −2.40761
\(748\) −60.1359 −2.19879
\(749\) 0 0
\(750\) 198.032 7.23111
\(751\) 25.5705 0.933081 0.466540 0.884500i \(-0.345500\pi\)
0.466540 + 0.884500i \(0.345500\pi\)
\(752\) −13.6120 −0.496380
\(753\) 39.0982 1.42482
\(754\) −21.0049 −0.764953
\(755\) 71.6744 2.60850
\(756\) 0 0
\(757\) 10.3797 0.377257 0.188629 0.982049i \(-0.439596\pi\)
0.188629 + 0.982049i \(0.439596\pi\)
\(758\) 45.1842 1.64116
\(759\) 85.7368 3.11205
\(760\) 2.76189 0.100184
\(761\) −29.1038 −1.05501 −0.527507 0.849551i \(-0.676873\pi\)
−0.527507 + 0.849551i \(0.676873\pi\)
\(762\) −6.90468 −0.250130
\(763\) 0 0
\(764\) −3.14746 −0.113871
\(765\) 191.161 6.91143
\(766\) 61.7301 2.23040
\(767\) −5.59577 −0.202052
\(768\) 41.0981 1.48300
\(769\) 17.1929 0.619994 0.309997 0.950738i \(-0.399672\pi\)
0.309997 + 0.950738i \(0.399672\pi\)
\(770\) 0 0
\(771\) 44.4119 1.59946
\(772\) −26.2496 −0.944744
\(773\) −4.46087 −0.160446 −0.0802231 0.996777i \(-0.525563\pi\)
−0.0802231 + 0.996777i \(0.525563\pi\)
\(774\) 74.2927 2.67039
\(775\) −25.4129 −0.912858
\(776\) 0.762231 0.0273625
\(777\) 0 0
\(778\) −63.9270 −2.29189
\(779\) 8.45773 0.303030
\(780\) 87.7589 3.14227
\(781\) −22.1523 −0.792671
\(782\) 59.4327 2.12531
\(783\) −64.1133 −2.29122
\(784\) 0 0
\(785\) −20.3820 −0.727465
\(786\) −40.0830 −1.42971
\(787\) −20.3039 −0.723756 −0.361878 0.932225i \(-0.617864\pi\)
−0.361878 + 0.932225i \(0.617864\pi\)
\(788\) −5.02567 −0.179032
\(789\) 73.5311 2.61778
\(790\) 105.365 3.74872
\(791\) 0 0
\(792\) −17.2592 −0.613278
\(793\) 37.0399 1.31532
\(794\) −46.8750 −1.66353
\(795\) −29.6684 −1.05223
\(796\) 43.2787 1.53397
\(797\) −19.0172 −0.673623 −0.336811 0.941572i \(-0.609348\pi\)
−0.336811 + 0.941572i \(0.609348\pi\)
\(798\) 0 0
\(799\) −21.3853 −0.756556
\(800\) 97.1015 3.43306
\(801\) 4.10477 0.145035
\(802\) −21.2021 −0.748671
\(803\) −42.8992 −1.51388
\(804\) 87.9231 3.10081
\(805\) 0 0
\(806\) −12.4973 −0.440198
\(807\) −14.7952 −0.520817
\(808\) −6.25241 −0.219959
\(809\) −8.26981 −0.290751 −0.145376 0.989377i \(-0.546439\pi\)
−0.145376 + 0.989377i \(0.546439\pi\)
\(810\) 299.488 10.5229
\(811\) 5.29940 0.186087 0.0930436 0.995662i \(-0.470340\pi\)
0.0930436 + 0.995662i \(0.470340\pi\)
\(812\) 0 0
\(813\) −15.7154 −0.551165
\(814\) −40.2599 −1.41111
\(815\) −61.7250 −2.16213
\(816\) 66.4612 2.32661
\(817\) −6.88820 −0.240988
\(818\) 26.5666 0.928878
\(819\) 0 0
\(820\) −48.4968 −1.69358
\(821\) 17.0332 0.594464 0.297232 0.954805i \(-0.403937\pi\)
0.297232 + 0.954805i \(0.403937\pi\)
\(822\) −137.626 −4.80025
\(823\) 6.99492 0.243828 0.121914 0.992541i \(-0.461097\pi\)
0.121914 + 0.992541i \(0.461097\pi\)
\(824\) 2.66636 0.0928870
\(825\) 197.123 6.86294
\(826\) 0 0
\(827\) −4.65051 −0.161714 −0.0808571 0.996726i \(-0.525766\pi\)
−0.0808571 + 0.996726i \(0.525766\pi\)
\(828\) 95.6787 3.32506
\(829\) −20.0100 −0.694976 −0.347488 0.937685i \(-0.612965\pi\)
−0.347488 + 0.937685i \(0.612965\pi\)
\(830\) −66.6959 −2.31505
\(831\) 8.03012 0.278562
\(832\) 27.4142 0.950416
\(833\) 0 0
\(834\) −81.0692 −2.80720
\(835\) 6.13367 0.212264
\(836\) 17.1127 0.591854
\(837\) −38.1455 −1.31850
\(838\) 67.1651 2.32018
\(839\) −1.79994 −0.0621409 −0.0310704 0.999517i \(-0.509892\pi\)
−0.0310704 + 0.999517i \(0.509892\pi\)
\(840\) 0 0
\(841\) −16.2534 −0.560461
\(842\) 61.4613 2.11810
\(843\) −76.5282 −2.63577
\(844\) −25.4793 −0.877035
\(845\) 19.6505 0.675998
\(846\) −65.6355 −2.25659
\(847\) 0 0
\(848\) −7.58464 −0.260458
\(849\) 106.784 3.66480
\(850\) 136.646 4.68691
\(851\) 20.8703 0.715426
\(852\) −33.6198 −1.15180
\(853\) −18.8135 −0.644161 −0.322081 0.946712i \(-0.604382\pi\)
−0.322081 + 0.946712i \(0.604382\pi\)
\(854\) 0 0
\(855\) −54.3980 −1.86037
\(856\) 4.87812 0.166731
\(857\) −35.7199 −1.22017 −0.610084 0.792337i \(-0.708864\pi\)
−0.610084 + 0.792337i \(0.708864\pi\)
\(858\) 96.9390 3.30944
\(859\) 0.393194 0.0134156 0.00670780 0.999978i \(-0.497865\pi\)
0.00670780 + 0.999978i \(0.497865\pi\)
\(860\) 39.4971 1.34684
\(861\) 0 0
\(862\) −73.8176 −2.51424
\(863\) 37.9269 1.29105 0.645524 0.763740i \(-0.276639\pi\)
0.645524 + 0.763740i \(0.276639\pi\)
\(864\) 145.752 4.95859
\(865\) −89.9924 −3.05983
\(866\) −12.9429 −0.439819
\(867\) 47.1818 1.60238
\(868\) 0 0
\(869\) 61.0478 2.07091
\(870\) −101.531 −3.44224
\(871\) −33.9559 −1.15055
\(872\) 5.14365 0.174186
\(873\) −15.0128 −0.508107
\(874\) −16.9126 −0.572076
\(875\) 0 0
\(876\) −65.1068 −2.19975
\(877\) −23.3730 −0.789251 −0.394625 0.918842i \(-0.629126\pi\)
−0.394625 + 0.918842i \(0.629126\pi\)
\(878\) −15.6918 −0.529572
\(879\) 8.27967 0.279266
\(880\) 71.4553 2.40876
\(881\) 27.2506 0.918095 0.459047 0.888412i \(-0.348191\pi\)
0.459047 + 0.888412i \(0.348191\pi\)
\(882\) 0 0
\(883\) 39.6048 1.33281 0.666404 0.745590i \(-0.267832\pi\)
0.666404 + 0.745590i \(0.267832\pi\)
\(884\) 35.2470 1.18549
\(885\) −27.0483 −0.909218
\(886\) 15.1130 0.507733
\(887\) −4.13182 −0.138733 −0.0693665 0.997591i \(-0.522098\pi\)
−0.0693665 + 0.997591i \(0.522098\pi\)
\(888\) −5.71363 −0.191737
\(889\) 0 0
\(890\) 4.16047 0.139459
\(891\) 173.521 5.81318
\(892\) −15.3107 −0.512641
\(893\) 6.08553 0.203644
\(894\) −128.452 −4.29609
\(895\) −61.0590 −2.04098
\(896\) 0 0
\(897\) −50.2523 −1.67788
\(898\) −54.1677 −1.80760
\(899\) 7.58386 0.252936
\(900\) 219.981 7.33271
\(901\) −11.9159 −0.396975
\(902\) −53.5699 −1.78368
\(903\) 0 0
\(904\) −6.95457 −0.231305
\(905\) −43.7704 −1.45498
\(906\) 120.157 3.99195
\(907\) −8.13062 −0.269973 −0.134986 0.990847i \(-0.543099\pi\)
−0.134986 + 0.990847i \(0.543099\pi\)
\(908\) 19.9177 0.660994
\(909\) 123.147 4.08453
\(910\) 0 0
\(911\) −14.0255 −0.464685 −0.232343 0.972634i \(-0.574639\pi\)
−0.232343 + 0.972634i \(0.574639\pi\)
\(912\) −18.9126 −0.626260
\(913\) −38.6432 −1.27890
\(914\) −63.4804 −2.09975
\(915\) 179.040 5.91887
\(916\) −54.8590 −1.81259
\(917\) 0 0
\(918\) 205.109 6.76961
\(919\) 32.7303 1.07967 0.539836 0.841770i \(-0.318486\pi\)
0.539836 + 0.841770i \(0.318486\pi\)
\(920\) 9.06840 0.298976
\(921\) −20.7834 −0.684838
\(922\) −78.3990 −2.58193
\(923\) 12.9840 0.427372
\(924\) 0 0
\(925\) 47.9844 1.57772
\(926\) 47.2765 1.55360
\(927\) −52.5163 −1.72486
\(928\) −28.9776 −0.951236
\(929\) −16.5866 −0.544189 −0.272094 0.962271i \(-0.587716\pi\)
−0.272094 + 0.962271i \(0.587716\pi\)
\(930\) −60.4081 −1.98086
\(931\) 0 0
\(932\) −25.7904 −0.844792
\(933\) 31.7712 1.04014
\(934\) −67.3601 −2.20409
\(935\) 112.260 3.67130
\(936\) 10.1160 0.330652
\(937\) −52.3826 −1.71126 −0.855632 0.517584i \(-0.826832\pi\)
−0.855632 + 0.517584i \(0.826832\pi\)
\(938\) 0 0
\(939\) 5.41475 0.176704
\(940\) −34.8945 −1.13813
\(941\) 12.7563 0.415844 0.207922 0.978145i \(-0.433330\pi\)
0.207922 + 0.978145i \(0.433330\pi\)
\(942\) −34.1689 −1.11328
\(943\) 27.7701 0.904320
\(944\) −6.91481 −0.225058
\(945\) 0 0
\(946\) 43.6287 1.41849
\(947\) −46.2884 −1.50417 −0.752085 0.659066i \(-0.770952\pi\)
−0.752085 + 0.659066i \(0.770952\pi\)
\(948\) 92.6504 3.00915
\(949\) 25.1442 0.816216
\(950\) −38.8848 −1.26159
\(951\) −29.5441 −0.958032
\(952\) 0 0
\(953\) −9.09754 −0.294698 −0.147349 0.989085i \(-0.547074\pi\)
−0.147349 + 0.989085i \(0.547074\pi\)
\(954\) −36.5721 −1.18407
\(955\) 5.87559 0.190130
\(956\) −39.6707 −1.28304
\(957\) −58.8266 −1.90159
\(958\) −33.6554 −1.08736
\(959\) 0 0
\(960\) 132.512 4.27681
\(961\) −26.4878 −0.854446
\(962\) 23.5972 0.760806
\(963\) −96.0789 −3.09610
\(964\) −11.8684 −0.382256
\(965\) 49.0020 1.57743
\(966\) 0 0
\(967\) −14.7706 −0.474991 −0.237495 0.971389i \(-0.576326\pi\)
−0.237495 + 0.971389i \(0.576326\pi\)
\(968\) −5.48103 −0.176167
\(969\) −29.7128 −0.954512
\(970\) −15.2165 −0.488573
\(971\) −33.4545 −1.07361 −0.536803 0.843708i \(-0.680368\pi\)
−0.536803 + 0.843708i \(0.680368\pi\)
\(972\) 144.487 4.63442
\(973\) 0 0
\(974\) −25.1193 −0.804875
\(975\) −115.538 −3.70019
\(976\) 45.7709 1.46509
\(977\) 30.6859 0.981728 0.490864 0.871236i \(-0.336681\pi\)
0.490864 + 0.871236i \(0.336681\pi\)
\(978\) −103.477 −3.30884
\(979\) 2.41055 0.0770414
\(980\) 0 0
\(981\) −101.309 −3.23454
\(982\) 7.53625 0.240491
\(983\) 47.4874 1.51461 0.757307 0.653059i \(-0.226515\pi\)
0.757307 + 0.653059i \(0.226515\pi\)
\(984\) −7.60257 −0.242361
\(985\) 9.38179 0.298929
\(986\) −40.7786 −1.29865
\(987\) 0 0
\(988\) −10.0301 −0.319101
\(989\) −22.6167 −0.719170
\(990\) 344.548 10.9504
\(991\) −24.5775 −0.780728 −0.390364 0.920661i \(-0.627651\pi\)
−0.390364 + 0.920661i \(0.627651\pi\)
\(992\) −17.2408 −0.547396
\(993\) 55.3878 1.75768
\(994\) 0 0
\(995\) −80.7916 −2.56126
\(996\) −58.6475 −1.85832
\(997\) −38.9650 −1.23403 −0.617016 0.786950i \(-0.711659\pi\)
−0.617016 + 0.786950i \(0.711659\pi\)
\(998\) 69.3757 2.19605
\(999\) 72.0260 2.27880
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.t.1.10 yes 74
7.6 odd 2 inner 6223.2.a.t.1.9 74
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6223.2.a.t.1.9 74 7.6 odd 2 inner
6223.2.a.t.1.10 yes 74 1.1 even 1 trivial