Properties

Label 2-6223-1.1-c1-0-13
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.80·2-s − 3.27·3-s + 1.24·4-s + 1.98·5-s + 5.89·6-s + 1.36·8-s + 7.72·9-s − 3.56·10-s − 3.35·11-s − 4.07·12-s − 2.29·13-s − 6.49·15-s − 4.94·16-s − 0.137·17-s − 13.9·18-s + 0.990·19-s + 2.46·20-s + 6.04·22-s − 5.97·23-s − 4.46·24-s − 1.07·25-s + 4.12·26-s − 15.4·27-s − 9.52·29-s + 11.6·30-s − 9.64·31-s + 6.17·32-s + ⋯
L(s)  = 1  − 1.27·2-s − 1.89·3-s + 0.621·4-s + 0.886·5-s + 2.40·6-s + 0.481·8-s + 2.57·9-s − 1.12·10-s − 1.01·11-s − 1.17·12-s − 0.635·13-s − 1.67·15-s − 1.23·16-s − 0.0333·17-s − 3.27·18-s + 0.227·19-s + 0.550·20-s + 1.28·22-s − 1.24·23-s − 0.911·24-s − 0.214·25-s + 0.809·26-s − 2.97·27-s − 1.76·29-s + 2.13·30-s − 1.73·31-s + 1.09·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.07271492430\)
\(L(\frac12)\) \(\approx\) \(0.07271492430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 1.80T + 2T^{2} \)
3 \( 1 + 3.27T + 3T^{2} \)
5 \( 1 - 1.98T + 5T^{2} \)
11 \( 1 + 3.35T + 11T^{2} \)
13 \( 1 + 2.29T + 13T^{2} \)
17 \( 1 + 0.137T + 17T^{2} \)
19 \( 1 - 0.990T + 19T^{2} \)
23 \( 1 + 5.97T + 23T^{2} \)
29 \( 1 + 9.52T + 29T^{2} \)
31 \( 1 + 9.64T + 31T^{2} \)
37 \( 1 + 10.0T + 37T^{2} \)
41 \( 1 + 4.24T + 41T^{2} \)
43 \( 1 - 3.91T + 43T^{2} \)
47 \( 1 + 3.08T + 47T^{2} \)
53 \( 1 - 3.23T + 53T^{2} \)
59 \( 1 + 7.78T + 59T^{2} \)
61 \( 1 + 3.32T + 61T^{2} \)
67 \( 1 + 8.34T + 67T^{2} \)
71 \( 1 + 5.67T + 71T^{2} \)
73 \( 1 - 7.22T + 73T^{2} \)
79 \( 1 + 7.90T + 79T^{2} \)
83 \( 1 - 17.2T + 83T^{2} \)
89 \( 1 - 5.07T + 89T^{2} \)
97 \( 1 - 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75812312550305757118649268417, −7.46437963970287778416881016230, −6.70954032204622962986886406972, −5.84498895697064857053481209881, −5.41012049966824705704327807696, −4.81573149945306293466429470019, −3.79185773280474764016450775054, −2.03684858576119134748106963172, −1.63046872042846973597037053772, −0.18836511100548314806223666687, 0.18836511100548314806223666687, 1.63046872042846973597037053772, 2.03684858576119134748106963172, 3.79185773280474764016450775054, 4.81573149945306293466429470019, 5.41012049966824705704327807696, 5.84498895697064857053481209881, 6.70954032204622962986886406972, 7.46437963970287778416881016230, 7.75812312550305757118649268417

Graph of the $Z$-function along the critical line