L(s) = 1 | + 2-s + 4-s + 8-s − 2·13-s + 16-s − 17-s + 25-s − 2·26-s + 32-s − 34-s − 49-s + 50-s − 2·52-s − 2·53-s + 64-s − 68-s + 2·89-s − 98-s + 100-s + 2·101-s − 2·104-s − 2·106-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s − 2·13-s + 16-s − 17-s + 25-s − 2·26-s + 32-s − 34-s − 49-s + 50-s − 2·52-s − 2·53-s + 64-s − 68-s + 2·89-s − 98-s + 100-s + 2·101-s − 2·104-s − 2·106-s + ⋯ |
Λ(s)=(=(612s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(612s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
612
= 22⋅32⋅17
|
Sign: |
1
|
Analytic conductor: |
0.305427 |
Root analytic conductor: |
0.552655 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ612(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 612, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.569616600 |
L(21) |
≈ |
1.569616600 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 17 | 1+T |
good | 5 | (1−T)(1+T) |
| 7 | 1+T2 |
| 11 | 1+T2 |
| 13 | (1+T)2 |
| 19 | (1−T)(1+T) |
| 23 | 1+T2 |
| 29 | (1−T)(1+T) |
| 31 | 1+T2 |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | (1−T)(1+T) |
| 53 | (1+T)2 |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | (1−T)(1+T) |
| 71 | 1+T2 |
| 73 | (1−T)(1+T) |
| 79 | 1+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)2 |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01361511296499662988051015116, −10.15934166306212921952565676537, −9.230068915079004819121392749342, −7.929900660265677048069781859922, −7.10461071371140693459800334853, −6.33572911611919867273565186629, −5.05357000362313766271212661191, −4.54815223255620235231881143477, −3.12333612951879445036966965769, −2.11496417031398947575557591105,
2.11496417031398947575557591105, 3.12333612951879445036966965769, 4.54815223255620235231881143477, 5.05357000362313766271212661191, 6.33572911611919867273565186629, 7.10461071371140693459800334853, 7.929900660265677048069781859922, 9.230068915079004819121392749342, 10.15934166306212921952565676537, 11.01361511296499662988051015116