L(s) = 1 | + 2-s + 4-s + 8-s − 2·13-s + 16-s − 17-s + 25-s − 2·26-s + 32-s − 34-s − 49-s + 50-s − 2·52-s − 2·53-s + 64-s − 68-s + 2·89-s − 98-s + 100-s + 2·101-s − 2·104-s − 2·106-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s − 2·13-s + 16-s − 17-s + 25-s − 2·26-s + 32-s − 34-s − 49-s + 50-s − 2·52-s − 2·53-s + 64-s − 68-s + 2·89-s − 98-s + 100-s + 2·101-s − 2·104-s − 2·106-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.569616600\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.569616600\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 + T )^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01361511296499662988051015116, −10.15934166306212921952565676537, −9.230068915079004819121392749342, −7.929900660265677048069781859922, −7.10461071371140693459800334853, −6.33572911611919867273565186629, −5.05357000362313766271212661191, −4.54815223255620235231881143477, −3.12333612951879445036966965769, −2.11496417031398947575557591105,
2.11496417031398947575557591105, 3.12333612951879445036966965769, 4.54815223255620235231881143477, 5.05357000362313766271212661191, 6.33572911611919867273565186629, 7.10461071371140693459800334853, 7.929900660265677048069781859922, 9.230068915079004819121392749342, 10.15934166306212921952565676537, 11.01361511296499662988051015116