Properties

Label 2.612.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $612$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(612\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.2448.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.68.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{17})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{2} - 6x + 10 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 47 + 67\cdot 89 + 34\cdot 89^{2} + 6\cdot 89^{3} + 57\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 66 + 39\cdot 89 + 4\cdot 89^{2} + 86\cdot 89^{3} + 75\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 76 + 64\cdot 89 + 8\cdot 89^{2} + 54\cdot 89^{3} + 86\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 78 + 5\cdot 89 + 41\cdot 89^{2} + 31\cdot 89^{3} + 47\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.