Properties

Label 2-595-1.1-c1-0-17
Degree $2$
Conductor $595$
Sign $1$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.57·2-s − 1.38·3-s + 4.65·4-s + 5-s − 3.57·6-s + 7-s + 6.84·8-s − 1.07·9-s + 2.57·10-s + 4.26·11-s − 6.45·12-s − 1.57·13-s + 2.57·14-s − 1.38·15-s + 8.35·16-s + 17-s − 2.77·18-s − 4.26·19-s + 4.65·20-s − 1.38·21-s + 11.0·22-s − 0.266·23-s − 9.49·24-s + 25-s − 4.07·26-s + 5.65·27-s + 4.65·28-s + ⋯
L(s)  = 1  + 1.82·2-s − 0.801·3-s + 2.32·4-s + 0.447·5-s − 1.46·6-s + 0.377·7-s + 2.42·8-s − 0.358·9-s + 0.815·10-s + 1.28·11-s − 1.86·12-s − 0.438·13-s + 0.689·14-s − 0.358·15-s + 2.08·16-s + 0.242·17-s − 0.653·18-s − 0.978·19-s + 1.04·20-s − 0.302·21-s + 2.34·22-s − 0.0555·23-s − 1.93·24-s + 0.200·25-s − 0.799·26-s + 1.08·27-s + 0.879·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.637317134\)
\(L(\frac12)\) \(\approx\) \(3.637317134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
good2 \( 1 - 2.57T + 2T^{2} \)
3 \( 1 + 1.38T + 3T^{2} \)
11 \( 1 - 4.26T + 11T^{2} \)
13 \( 1 + 1.57T + 13T^{2} \)
19 \( 1 + 4.26T + 19T^{2} \)
23 \( 1 + 0.266T + 23T^{2} \)
29 \( 1 + 2.95T + 29T^{2} \)
31 \( 1 + 0.583T + 31T^{2} \)
37 \( 1 - 10.5T + 37T^{2} \)
41 \( 1 + 4.73T + 41T^{2} \)
43 \( 1 + 3.57T + 43T^{2} \)
47 \( 1 + 5.88T + 47T^{2} \)
53 \( 1 + 7.73T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 + 3.50T + 61T^{2} \)
67 \( 1 + 3.26T + 67T^{2} \)
71 \( 1 + 13.0T + 71T^{2} \)
73 \( 1 + 0.191T + 73T^{2} \)
79 \( 1 - 0.163T + 79T^{2} \)
83 \( 1 + 4.00T + 83T^{2} \)
89 \( 1 - 12.7T + 89T^{2} \)
97 \( 1 - 8.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.22114656988778006220677393455, −10.23967355167450759564995024726, −8.969642580907784668093309942472, −7.56984674163711425299829863294, −6.34967438114348761758365760202, −6.14794992768772779723630677505, −5.03520951674539196675443870236, −4.36010985067546135055976024154, −3.13324929943694919937347053137, −1.78399131498275490911683526285, 1.78399131498275490911683526285, 3.13324929943694919937347053137, 4.36010985067546135055976024154, 5.03520951674539196675443870236, 6.14794992768772779723630677505, 6.34967438114348761758365760202, 7.56984674163711425299829863294, 8.969642580907784668093309942472, 10.23967355167450759564995024726, 11.22114656988778006220677393455

Graph of the $Z$-function along the critical line