Properties

Label 595.2.a.i
Level $595$
Weight $2$
Character orbit 595.a
Self dual yes
Analytic conductor $4.751$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [595,2,Mod(1,595)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(595, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("595.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 595 = 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 595.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,-2,3,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.75109892027\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.10889.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} - 1) q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + q^{5} + ( - \beta_1 - 1) q^{6} + q^{7} + (\beta_{3} + \beta_{2} + 2 \beta_1 + 1) q^{8} - \beta_{2} q^{9} + \beta_1 q^{10}+ \cdots + (3 \beta_{3} + \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 2 q^{3} + 3 q^{4} + 4 q^{5} - 5 q^{6} + 4 q^{7} + 6 q^{8} + 2 q^{9} + q^{10} + 5 q^{11} - 8 q^{12} + 3 q^{13} + q^{14} - 2 q^{15} + 9 q^{16} + 4 q^{17} + 4 q^{18} - 5 q^{19} + 3 q^{20}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.95197
−0.296768
0.669225
2.57951
−1.95197 −0.487697 1.81018 1.00000 0.951969 1.00000 0.370517 −2.76215 −1.95197
1.2 −0.296768 2.36963 −1.91193 1.00000 −0.703232 1.00000 1.16094 2.61516 −0.296768
1.3 0.669225 −2.49427 −1.55214 1.00000 −1.66922 1.00000 −2.37718 3.22136 0.669225
1.4 2.57951 −1.38767 4.65388 1.00000 −3.57951 1.00000 6.84573 −1.07437 2.57951
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 595.2.a.i 4
3.b odd 2 1 5355.2.a.bk 4
4.b odd 2 1 9520.2.a.bn 4
5.b even 2 1 2975.2.a.j 4
7.b odd 2 1 4165.2.a.bd 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
595.2.a.i 4 1.a even 1 1 trivial
2975.2.a.j 4 5.b even 2 1
4165.2.a.bd 4 7.b odd 2 1
5355.2.a.bk 4 3.b odd 2 1
9520.2.a.bn 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(595))\):

\( T_{2}^{4} - T_{2}^{3} - 5T_{2}^{2} + 2T_{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} - 5T_{11}^{3} - 5T_{11}^{2} + 45T_{11} - 44 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} - 5 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 5 T^{3} + \cdots - 44 \) Copy content Toggle raw display
$13$ \( T^{4} - 3 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$17$ \( (T - 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 5 T^{3} + \cdots - 44 \) Copy content Toggle raw display
$23$ \( T^{4} - 11 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + \cdots - 22 \) Copy content Toggle raw display
$31$ \( T^{4} + T^{3} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{4} - 20 T^{3} + \cdots + 50 \) Copy content Toggle raw display
$41$ \( T^{4} - 9 T^{3} + \cdots - 162 \) Copy content Toggle raw display
$43$ \( T^{4} + 5 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$47$ \( T^{4} + 9 T^{3} + \cdots - 848 \) Copy content Toggle raw display
$53$ \( T^{4} - 5 T^{3} + \cdots + 2246 \) Copy content Toggle raw display
$59$ \( T^{4} + 5 T^{3} + \cdots + 764 \) Copy content Toggle raw display
$61$ \( T^{4} + 11 T^{3} + \cdots - 242 \) Copy content Toggle raw display
$67$ \( T^{4} - 7 T^{3} + \cdots + 1100 \) Copy content Toggle raw display
$71$ \( T^{4} + 19 T^{3} + \cdots - 6824 \) Copy content Toggle raw display
$73$ \( T^{4} - 5 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$79$ \( T^{4} + 10 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( T^{4} - 16 T^{3} + \cdots - 508 \) Copy content Toggle raw display
$89$ \( T^{4} + 11 T^{3} + \cdots - 4886 \) Copy content Toggle raw display
$97$ \( T^{4} - 8 T^{3} + \cdots + 5650 \) Copy content Toggle raw display
show more
show less