Properties

Label 2-595-1.1-c1-0-12
Degree $2$
Conductor $595$
Sign $1$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.296·2-s + 2.36·3-s − 1.91·4-s + 5-s − 0.703·6-s + 7-s + 1.16·8-s + 2.61·9-s − 0.296·10-s + 1.45·11-s − 4.53·12-s + 1.29·13-s − 0.296·14-s + 2.36·15-s + 3.47·16-s + 17-s − 0.776·18-s − 1.45·19-s − 1.91·20-s + 2.36·21-s − 0.432·22-s + 2.54·23-s + 2.75·24-s + 25-s − 0.384·26-s − 0.911·27-s − 1.91·28-s + ⋯
L(s)  = 1  − 0.209·2-s + 1.36·3-s − 0.955·4-s + 0.447·5-s − 0.287·6-s + 0.377·7-s + 0.410·8-s + 0.871·9-s − 0.0938·10-s + 0.439·11-s − 1.30·12-s + 0.359·13-s − 0.0793·14-s + 0.611·15-s + 0.869·16-s + 0.242·17-s − 0.182·18-s − 0.334·19-s − 0.427·20-s + 0.517·21-s − 0.0922·22-s + 0.530·23-s + 0.561·24-s + 0.200·25-s − 0.0754·26-s − 0.175·27-s − 0.361·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.955090113\)
\(L(\frac12)\) \(\approx\) \(1.955090113\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
good2 \( 1 + 0.296T + 2T^{2} \)
3 \( 1 - 2.36T + 3T^{2} \)
11 \( 1 - 1.45T + 11T^{2} \)
13 \( 1 - 1.29T + 13T^{2} \)
19 \( 1 + 1.45T + 19T^{2} \)
23 \( 1 - 2.54T + 23T^{2} \)
29 \( 1 + 0.212T + 29T^{2} \)
31 \( 1 - 7.81T + 31T^{2} \)
37 \( 1 - 1.03T + 37T^{2} \)
41 \( 1 - 3.89T + 41T^{2} \)
43 \( 1 + 0.703T + 43T^{2} \)
47 \( 1 + 8.46T + 47T^{2} \)
53 \( 1 + 4.62T + 53T^{2} \)
59 \( 1 - 8.24T + 59T^{2} \)
61 \( 1 + 4.31T + 61T^{2} \)
67 \( 1 + 5.97T + 67T^{2} \)
71 \( 1 + 9.87T + 71T^{2} \)
73 \( 1 + 1.07T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 + 8.95T + 89T^{2} \)
97 \( 1 + 8.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28631210934656552159843682209, −9.590472016699255595301855654198, −8.838395276563277616554189643551, −8.337011326313763670140554947931, −7.49089283858640747646824465690, −6.16099319566124292303194308745, −4.88825134182498779911900655597, −3.93601914136006177934500819790, −2.85435758948977042621884932337, −1.42501856138959942649737817251, 1.42501856138959942649737817251, 2.85435758948977042621884932337, 3.93601914136006177934500819790, 4.88825134182498779911900655597, 6.16099319566124292303194308745, 7.49089283858640747646824465690, 8.337011326313763670140554947931, 8.838395276563277616554189643551, 9.590472016699255595301855654198, 10.28631210934656552159843682209

Graph of the $Z$-function along the critical line