L(s) = 1 | + (−4.5 − 7.79i)3-s + (23.0 − 39.9i)5-s + (−40.5 + 70.1i)9-s + (315. + 546. i)11-s + 1.07e3·13-s − 415.·15-s + (80.5 + 139. i)17-s + (588. − 1.01e3i)19-s + (−1.08e3 + 1.87e3i)23-s + (499. + 864. i)25-s + 729·27-s − 4.49e3·29-s + (159. + 275. i)31-s + (2.84e3 − 4.91e3i)33-s + (−7.59e3 + 1.31e4i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.412 − 0.714i)5-s + (−0.166 + 0.288i)9-s + (0.786 + 1.36i)11-s + 1.77·13-s − 0.476·15-s + (0.0676 + 0.117i)17-s + (0.373 − 0.647i)19-s + (−0.426 + 0.738i)23-s + (0.159 + 0.276i)25-s + 0.192·27-s − 0.991·29-s + (0.0297 + 0.0515i)31-s + (0.454 − 0.786i)33-s + (−0.911 + 1.57i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.605−0.795i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), 0.605−0.795i)
|
Particular Values
L(3) |
≈ |
1.908717483 |
L(21) |
≈ |
1.908717483 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(−23.0+39.9i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−315.−546.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−1.07e3T+3.71e5T2 |
| 17 | 1+(−80.5−139.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−588.+1.01e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(1.08e3−1.87e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+4.49e3T+2.05e7T2 |
| 31 | 1+(−159.−275.i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(7.59e3−1.31e4i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+2.05e4T+1.15e8T2 |
| 43 | 1+455.T+1.47e8T2 |
| 47 | 1+(1.03e4−1.79e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−9.65e3−1.67e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−3.18e3−5.51e3i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(2.45e4−4.25e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(1.70e4+2.94e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−6.29e4T+1.80e9T2 |
| 73 | 1+(4.43e3+7.67e3i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(1.72e4−2.98e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−7.04e3T+3.93e9T2 |
| 89 | 1+(1.01e4−1.75e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+5.40e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.921022852659037381891472500301, −9.139568316011311061523957954339, −8.375508764449549254863142463599, −7.25090734595754415004215710410, −6.45157354545787009794112421254, −5.52006917310691460699254781193, −4.56825482032869761728180816621, −3.40804613057975487160854921369, −1.66493122688237954049324871011, −1.26700399564779224186915229426,
0.44926658143144563230536709623, 1.75796981814511933371357216513, 3.38470857199495160400649404749, 3.78725611736600871477000197084, 5.41196985276165885234242519960, 6.14327102457806039356258360864, 6.77168597906570616130625824040, 8.295583238786855921632599363786, 8.852365015772599403343746282036, 9.933931612422096879362135231267