L(s) = 1 | + (−4.5 + 7.79i)3-s + (23.0 + 39.9i)5-s + (−40.5 − 70.1i)9-s + (315. − 546. i)11-s + 1.07e3·13-s − 415.·15-s + (80.5 − 139. i)17-s + (588. + 1.01e3i)19-s + (−1.08e3 − 1.87e3i)23-s + (499. − 864. i)25-s + 729·27-s − 4.49e3·29-s + (159. − 275. i)31-s + (2.84e3 + 4.91e3i)33-s + (−7.59e3 − 1.31e4i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.412 + 0.714i)5-s + (−0.166 − 0.288i)9-s + (0.786 − 1.36i)11-s + 1.77·13-s − 0.476·15-s + (0.0676 − 0.117i)17-s + (0.373 + 0.647i)19-s + (−0.426 − 0.738i)23-s + (0.159 − 0.276i)25-s + 0.192·27-s − 0.991·29-s + (0.0297 − 0.0515i)31-s + (0.454 + 0.786i)33-s + (−0.911 − 1.57i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.908717483\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.908717483\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-23.0 - 39.9i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-315. + 546. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 1.07e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-80.5 + 139. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-588. - 1.01e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (1.08e3 + 1.87e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 4.49e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-159. + 275. i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (7.59e3 + 1.31e4i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 2.05e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 455.T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.03e4 + 1.79e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-9.65e3 + 1.67e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-3.18e3 + 5.51e3i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (2.45e4 + 4.25e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.70e4 - 2.94e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 6.29e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (4.43e3 - 7.67e3i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (1.72e4 + 2.98e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 7.04e3T + 3.93e9T^{2} \) |
| 89 | \( 1 + (1.01e4 + 1.75e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 5.40e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.933931612422096879362135231267, −8.852365015772599403343746282036, −8.295583238786855921632599363786, −6.77168597906570616130625824040, −6.14327102457806039356258360864, −5.41196985276165885234242519960, −3.78725611736600871477000197084, −3.38470857199495160400649404749, −1.75796981814511933371357216513, −0.44926658143144563230536709623,
1.26700399564779224186915229426, 1.66493122688237954049324871011, 3.40804613057975487160854921369, 4.56825482032869761728180816621, 5.52006917310691460699254781193, 6.45157354545787009794112421254, 7.25090734595754415004215710410, 8.375508764449549254863142463599, 9.139568316011311061523957954339, 9.921022852659037381891472500301