L(s) = 1 | + (−4.5 − 7.79i)3-s + (−15.9 + 27.6i)5-s + (−40.5 + 70.1i)9-s + (−130. − 225. i)11-s − 769.·13-s + 287.·15-s + (−776. − 1.34e3i)17-s + (375. − 649. i)19-s + (−377. + 653. i)23-s + (1.05e3 + 1.82e3i)25-s + 729·27-s + 6.00e3·29-s + (−3.21e3 − 5.55e3i)31-s + (−1.17e3 + 2.03e3i)33-s + (2.38e3 − 4.13e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.285 + 0.495i)5-s + (−0.166 + 0.288i)9-s + (−0.325 − 0.562i)11-s − 1.26·13-s + 0.330·15-s + (−0.651 − 1.12i)17-s + (0.238 − 0.412i)19-s + (−0.148 + 0.257i)23-s + (0.336 + 0.582i)25-s + 0.192·27-s + 1.32·29-s + (−0.599 − 1.03i)31-s + (−0.187 + 0.325i)33-s + (0.286 − 0.496i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.605−0.795i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), 0.605−0.795i)
|
Particular Values
L(3) |
≈ |
0.8138080183 |
L(21) |
≈ |
0.8138080183 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(15.9−27.6i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(130.+225.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+769.T+3.71e5T2 |
| 17 | 1+(776.+1.34e3i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−375.+649.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(377.−653.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−6.00e3T+2.05e7T2 |
| 31 | 1+(3.21e3+5.55e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−2.38e3+4.13e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−5.42e3T+1.15e8T2 |
| 43 | 1+1.18e4T+1.47e8T2 |
| 47 | 1+(8.71e3−1.50e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(1.88e4+3.26e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.10e4−1.91e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(4.08e3−7.07e3i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(6.50e3+1.12e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+1.23e4T+1.80e9T2 |
| 73 | 1+(−2.18e4−3.77e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(3.83e4−6.64e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+2.18e4T+3.93e9T2 |
| 89 | 1+(6.84e4−1.18e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−9.30e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04863039081138182279377917370, −9.231003961595413095069555566307, −8.072530210998777706494762404070, −7.28567970380799604998258816587, −6.64372872747762649061109860804, −5.45420599643476119715017675012, −4.60423421140048572668946027780, −3.11286854645197789354337787934, −2.30236535280910748664620517995, −0.70568049398851539419256735121,
0.26767343996333052369294636123, 1.78406034225996911245922485760, 3.09511539833759666465238796610, 4.46232482733617553076625153097, 4.86497174274568538372822572289, 6.09798772785188995060767031164, 7.09226250658720736496133429294, 8.149229951522144959199136771036, 8.884296405336001080684895419057, 10.01830358340764411590627262832