L(s) = 1 | + (−4.5 + 7.79i)3-s + (−15.9 − 27.6i)5-s + (−40.5 − 70.1i)9-s + (−130. + 225. i)11-s − 769.·13-s + 287.·15-s + (−776. + 1.34e3i)17-s + (375. + 649. i)19-s + (−377. − 653. i)23-s + (1.05e3 − 1.82e3i)25-s + 729·27-s + 6.00e3·29-s + (−3.21e3 + 5.55e3i)31-s + (−1.17e3 − 2.03e3i)33-s + (2.38e3 + 4.13e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.285 − 0.495i)5-s + (−0.166 − 0.288i)9-s + (−0.325 + 0.562i)11-s − 1.26·13-s + 0.330·15-s + (−0.651 + 1.12i)17-s + (0.238 + 0.412i)19-s + (−0.148 − 0.257i)23-s + (0.336 − 0.582i)25-s + 0.192·27-s + 1.32·29-s + (−0.599 + 1.03i)31-s + (−0.187 − 0.325i)33-s + (0.286 + 0.496i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.8138080183\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8138080183\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (15.9 + 27.6i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (130. - 225. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 769.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (776. - 1.34e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-375. - 649. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (377. + 653. i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 6.00e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (3.21e3 - 5.55e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-2.38e3 - 4.13e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 5.42e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.18e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (8.71e3 + 1.50e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.88e4 - 3.26e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.10e4 + 1.91e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (4.08e3 + 7.07e3i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (6.50e3 - 1.12e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 1.23e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-2.18e4 + 3.77e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.83e4 + 6.64e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 2.18e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (6.84e4 + 1.18e5i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 9.30e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01830358340764411590627262832, −8.884296405336001080684895419057, −8.149229951522144959199136771036, −7.09226250658720736496133429294, −6.09798772785188995060767031164, −4.86497174274568538372822572289, −4.46232482733617553076625153097, −3.09511539833759666465238796610, −1.78406034225996911245922485760, −0.26767343996333052369294636123,
0.70568049398851539419256735121, 2.30236535280910748664620517995, 3.11286854645197789354337787934, 4.60423421140048572668946027780, 5.45420599643476119715017675012, 6.64372872747762649061109860804, 7.28567970380799604998258816587, 8.072530210998777706494762404070, 9.231003961595413095069555566307, 10.04863039081138182279377917370