L(s) = 1 | + (2.79 + 1.09i)3-s + (3.24 + 1.87i)5-s + (6.59 + 6.11i)9-s + (15.1 − 8.77i)11-s + 4.69·13-s + (6.99 + 8.77i)15-s + (−19.4 + 11.2i)17-s + (11.7 − 20.3i)19-s + (−5.5 − 9.52i)25-s + (11.7 + 24.3i)27-s + 17.5i·29-s + (23.4 + 40.6i)31-s + (52.0 − 7.85i)33-s + (15 − 25.9i)37-s + (13.0 + 5.13i)39-s + ⋯ |
L(s) = 1 | + (0.930 + 0.365i)3-s + (0.648 + 0.374i)5-s + (0.733 + 0.679i)9-s + (1.38 − 0.797i)11-s + 0.360·13-s + (0.466 + 0.584i)15-s + (−1.14 + 0.660i)17-s + (0.617 − 1.06i)19-s + (−0.220 − 0.381i)25-s + (0.434 + 0.900i)27-s + 0.605i·29-s + (0.756 + 1.31i)31-s + (1.57 − 0.238i)33-s + (0.405 − 0.702i)37-s + (0.335 + 0.131i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.052969641\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.052969641\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.79 - 1.09i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-3.24 - 1.87i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-15.1 + 8.77i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 4.69T + 169T^{2} \) |
| 17 | \( 1 + (19.4 - 11.2i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-11.7 + 20.3i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 17.5iT - 841T^{2} \) |
| 31 | \( 1 + (-23.4 - 40.6i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-15 + 25.9i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 + 50T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-51.8 - 29.9i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (75.9 - 43.8i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (81.0 - 46.7i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-58.6 + 101. i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 87.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-23.4 - 40.6i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-22 + 38.1i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 101. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-64.8 - 37.4i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + 75.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59402902082370530571360873621, −9.403790905882328744568220321841, −9.013094815580676403701698530203, −8.147961875185561597976566349877, −6.84881291614409871136647343556, −6.23110955423561030552417921056, −4.79821042533103555573448345597, −3.74531090249169356016997425365, −2.76076784032613549045760631534, −1.47120458121062678982589380799,
1.29519666428906996676511101837, 2.23874665661907116130931356924, 3.67579189664138345555631698986, 4.60153523904571178337343585413, 6.06435835608822367932504544253, 6.83289663606735836864582957188, 7.81704810806707892116823024875, 8.777430107343524236597485842317, 9.529731318292043278857884506460, 9.941633037696070728311166918219