Properties

Label 588.3.p.g
Level $588$
Weight $3$
Character orbit 588.p
Analytic conductor $16.022$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(557,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.186606965293056.87
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 65x^{4} + 324x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{3} + ( - \beta_{6} + \beta_{4} + \beta_1) q^{5} + ( - \beta_{7} - 2 \beta_{2} - 2) q^{9} + 2 \beta_{3} q^{11} + (\beta_{5} - \beta_{4}) q^{13} + ( - \beta_{7} - \beta_{3} + 7) q^{15} + (6 \beta_{6} + 6 \beta_{5} - 6 \beta_1) q^{17}+ \cdots + ( - 4 \beta_{7} - 4 \beta_{3} + 154) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 56 q^{15} - 44 q^{25} + 120 q^{37} + 44 q^{39} - 400 q^{43} - 168 q^{51} + 440 q^{57} - 40 q^{67} + 176 q^{79} + 292 q^{81} - 672 q^{85} - 440 q^{93} + 1232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 4x^{6} - 65x^{4} + 324x^{2} + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{6} + 65\nu^{4} + 260\nu^{2} - 6561 ) / 5265 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{6} - 130\nu^{4} + 4745\nu^{2} + 13122 ) / 5265 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -16\nu^{7} + 260\nu^{5} - 4225\nu^{3} - 26244\nu ) / 47385 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{7} - 65\nu^{5} - 260\nu^{3} + 6561\nu ) / 5265 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 4\nu^{5} - 65\nu^{3} + 324\nu ) / 729 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 73\nu^{6} + 130\nu^{4} - 4745\nu^{2} + 23652 ) / 5265 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{5} - 9\beta_{4} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{7} + 73\beta_{2} + 73 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 36\beta_{6} - 65\beta_{5} + 65\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 65\beta_{7} + 65\beta_{3} - 454 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 585\beta_{6} - 585\beta_{4} - 584\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
557.1
−2.79279 1.09560i
−0.447581 + 2.96642i
0.447581 2.96642i
2.79279 + 1.09560i
−2.79279 + 1.09560i
−0.447581 2.96642i
0.447581 + 2.96642i
2.79279 1.09560i
0 −2.79279 + 1.09560i 0 −3.24037 + 1.87083i 0 0 0 6.59934 6.11953i 0
557.2 0 −0.447581 2.96642i 0 −3.24037 + 1.87083i 0 0 0 −8.59934 + 2.65543i 0
557.3 0 0.447581 + 2.96642i 0 3.24037 1.87083i 0 0 0 −8.59934 + 2.65543i 0
557.4 0 2.79279 1.09560i 0 3.24037 1.87083i 0 0 0 6.59934 6.11953i 0
569.1 0 −2.79279 1.09560i 0 −3.24037 1.87083i 0 0 0 6.59934 + 6.11953i 0
569.2 0 −0.447581 + 2.96642i 0 −3.24037 1.87083i 0 0 0 −8.59934 2.65543i 0
569.3 0 0.447581 2.96642i 0 3.24037 + 1.87083i 0 0 0 −8.59934 2.65543i 0
569.4 0 2.79279 + 1.09560i 0 3.24037 + 1.87083i 0 0 0 6.59934 + 6.11953i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 557.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.3.p.g 8
3.b odd 2 1 inner 588.3.p.g 8
7.b odd 2 1 inner 588.3.p.g 8
7.c even 3 1 588.3.c.i 4
7.c even 3 1 inner 588.3.p.g 8
7.d odd 6 1 588.3.c.i 4
7.d odd 6 1 inner 588.3.p.g 8
21.c even 2 1 inner 588.3.p.g 8
21.g even 6 1 588.3.c.i 4
21.g even 6 1 inner 588.3.p.g 8
21.h odd 6 1 588.3.c.i 4
21.h odd 6 1 inner 588.3.p.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
588.3.c.i 4 7.c even 3 1
588.3.c.i 4 7.d odd 6 1
588.3.c.i 4 21.g even 6 1
588.3.c.i 4 21.h odd 6 1
588.3.p.g 8 1.a even 1 1 trivial
588.3.p.g 8 3.b odd 2 1 inner
588.3.p.g 8 7.b odd 2 1 inner
588.3.p.g 8 7.c even 3 1 inner
588.3.p.g 8 7.d odd 6 1 inner
588.3.p.g 8 21.c even 2 1 inner
588.3.p.g 8 21.g even 6 1 inner
588.3.p.g 8 21.h odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(588, [\chi])\):

\( T_{5}^{4} - 14T_{5}^{2} + 196 \) Copy content Toggle raw display
\( T_{13}^{2} - 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 4 T^{6} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( (T^{4} - 14 T^{2} + 196)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} - 308 T^{2} + 94864)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 22)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 504 T^{2} + 254016)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 550 T^{2} + 302500)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{2} + 308)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 2200 T^{2} + 4840000)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 30 T + 900)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T + 50)^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} - 3584 T^{2} + 12845056)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 7700 T^{2} + 59290000)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 8750 T^{2} + 76562500)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 13750 T^{2} + 189062500)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 10 T + 100)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 7700)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 2200 T^{2} + 4840000)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 44 T + 1936)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 10206)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 5600 T^{2} + 31360000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 5632)^{4} \) Copy content Toggle raw display
show more
show less