L(s) = 1 | + (0.447 + 2.96i)3-s + (3.24 − 1.87i)5-s + (−8.59 + 2.65i)9-s + (−15.1 − 8.77i)11-s − 4.69·13-s + (7 + 8.77i)15-s + (−19.4 − 11.2i)17-s + (−11.7 − 20.3i)19-s + (−5.5 + 9.52i)25-s + (−11.7 − 24.3i)27-s + 17.5i·29-s + (−23.4 + 40.6i)31-s + (19.2 − 49.0i)33-s + (15 + 25.9i)37-s + (−2.09 − 13.9i)39-s + ⋯ |
L(s) = 1 | + (0.149 + 0.988i)3-s + (0.648 − 0.374i)5-s + (−0.955 + 0.295i)9-s + (−1.38 − 0.797i)11-s − 0.360·13-s + (0.466 + 0.584i)15-s + (−1.14 − 0.660i)17-s + (−0.617 − 1.06i)19-s + (−0.220 + 0.381i)25-s + (−0.434 − 0.900i)27-s + 0.605i·29-s + (−0.756 + 1.31i)31-s + (0.582 − 1.48i)33-s + (0.405 + 0.702i)37-s + (−0.0538 − 0.356i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.696 + 0.717i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.696 + 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2213587654\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2213587654\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.447 - 2.96i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-3.24 + 1.87i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (15.1 + 8.77i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 4.69T + 169T^{2} \) |
| 17 | \( 1 + (19.4 + 11.2i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (11.7 + 20.3i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 - 17.5iT - 841T^{2} \) |
| 31 | \( 1 + (23.4 - 40.6i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-15 - 25.9i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 + 50T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-51.8 + 29.9i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-75.9 - 43.8i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (81.0 + 46.7i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (58.6 + 101. i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (5 - 8.66i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 87.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (23.4 - 40.6i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-22 - 38.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 101. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-64.8 + 37.4i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 75.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29280970708397558269327904206, −9.082816921815805226977671079469, −8.839696060426892507883139716249, −7.62632073550479476953037661639, −6.35393141270334794741931793693, −5.18273668010576577998408159295, −4.82515269264195705689331152684, −3.27856673010086445292058367399, −2.30325169668084789265606936093, −0.07196316093923038071878373447,
1.98886684377923195201891648409, 2.51163120180652293819684650484, 4.20335781028476939513820743173, 5.62466299768709886692630944237, 6.26962281518465971323726495985, 7.34356918060551036490860231734, 7.965923288954104907022422281671, 8.973795478699828986799503055279, 10.07851270461120070405084824830, 10.68344122206960995729990711999