L(s) = 1 | + (0.349 + 1.37i)2-s + (1.72 − 0.203i)3-s + (−1.75 + 0.958i)4-s − 2.27i·5-s + (0.880 + 2.28i)6-s + (−1.92 − 2.06i)8-s + (2.91 − 0.699i)9-s + (3.12 − 0.796i)10-s + 4.31·11-s + (−2.82 + 2.00i)12-s + 0.406·13-s + (−0.463 − 3.91i)15-s + (2.16 − 3.36i)16-s + 4.31i·17-s + (1.97 + 3.75i)18-s − 5.42i·19-s + ⋯ |
L(s) = 1 | + (0.247 + 0.968i)2-s + (0.993 − 0.117i)3-s + (−0.877 + 0.479i)4-s − 1.01i·5-s + (0.359 + 0.933i)6-s + (−0.681 − 0.731i)8-s + (0.972 − 0.233i)9-s + (0.986 − 0.251i)10-s + 1.30·11-s + (−0.815 + 0.579i)12-s + 0.112·13-s + (−0.119 − 1.01i)15-s + (0.540 − 0.841i)16-s + 1.04i·17-s + (0.466 + 0.884i)18-s − 1.24i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 - 0.579i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.815 - 0.579i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.13436 + 0.680830i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.13436 + 0.680830i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.349 - 1.37i)T \) |
| 3 | \( 1 + (-1.72 + 0.203i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2.27iT - 5T^{2} \) |
| 11 | \( 1 - 4.31T + 11T^{2} \) |
| 13 | \( 1 - 0.406T + 13T^{2} \) |
| 17 | \( 1 - 4.31iT - 17T^{2} \) |
| 19 | \( 1 + 5.42iT - 19T^{2} \) |
| 23 | \( 1 - 1.16T + 23T^{2} \) |
| 29 | \( 1 - 3.72iT - 29T^{2} \) |
| 31 | \( 1 - 5.83iT - 31T^{2} \) |
| 37 | \( 1 + 7.83T + 37T^{2} \) |
| 41 | \( 1 - 2.56iT - 41T^{2} \) |
| 43 | \( 1 + 11.0iT - 43T^{2} \) |
| 47 | \( 1 + 2.32T + 47T^{2} \) |
| 53 | \( 1 - 5.48iT - 53T^{2} \) |
| 59 | \( 1 + 3.91T + 59T^{2} \) |
| 61 | \( 1 + 10.4T + 61T^{2} \) |
| 67 | \( 1 + 7.83iT - 67T^{2} \) |
| 71 | \( 1 + 4.88T + 71T^{2} \) |
| 73 | \( 1 + 2.81T + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 + 0.641T + 83T^{2} \) |
| 89 | \( 1 - 13.9iT - 89T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55860899285983832055505693270, −9.225868096267554856857717998068, −8.943880499430205307092607843282, −8.307891546971475185709715163362, −7.15906243284187840032295962444, −6.48825294609614577299700437449, −5.12568252549115280773216581785, −4.26527045050063771348868468254, −3.33057168299526244410134626465, −1.35986859538439659027035822726,
1.61837036147840429504467658809, 2.84317676783894268128165290217, 3.61419449413602469259667935794, 4.52577427320016148868006415319, 6.04472830364021566868732113957, 7.08902258601889418357347205499, 8.158262422993317181631928034244, 9.176339851774088745598454967052, 9.762181866019533803153255336207, 10.54349976976227331074499873651