L(s) = 1 | + (1.13 + 0.842i)2-s + (1.65 + 0.522i)3-s + (0.578 + 1.91i)4-s + 0.499i·5-s + (1.43 + 1.98i)6-s + (−0.956 + 2.66i)8-s + (2.45 + 1.72i)9-s + (−0.421 + 0.567i)10-s + 1.39·11-s + (−0.0438 + 3.46i)12-s − 2.75·13-s + (−0.260 + 0.824i)15-s + (−3.32 + 2.21i)16-s − 5.82i·17-s + (1.33 + 4.02i)18-s − 2.48i·19-s + ⋯ |
L(s) = 1 | + (0.802 + 0.596i)2-s + (0.953 + 0.301i)3-s + (0.289 + 0.957i)4-s + 0.223i·5-s + (0.585 + 0.810i)6-s + (−0.338 + 0.941i)8-s + (0.818 + 0.575i)9-s + (−0.133 + 0.179i)10-s + 0.419·11-s + (−0.0126 + 0.999i)12-s − 0.762·13-s + (−0.0673 + 0.212i)15-s + (−0.832 + 0.554i)16-s − 1.41i·17-s + (0.314 + 0.949i)18-s − 0.569i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0126 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0126 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.16450 + 2.13727i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.16450 + 2.13727i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.13 - 0.842i)T \) |
| 3 | \( 1 + (-1.65 - 0.522i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 0.499iT - 5T^{2} \) |
| 11 | \( 1 - 1.39T + 11T^{2} \) |
| 13 | \( 1 + 2.75T + 13T^{2} \) |
| 17 | \( 1 + 5.82iT - 17T^{2} \) |
| 19 | \( 1 + 2.48iT - 19T^{2} \) |
| 23 | \( 1 + 5.06T + 23T^{2} \) |
| 29 | \( 1 - 6.32iT - 29T^{2} \) |
| 31 | \( 1 + 6.91iT - 31T^{2} \) |
| 37 | \( 1 - 7.34T + 37T^{2} \) |
| 41 | \( 1 - 5.74iT - 41T^{2} \) |
| 43 | \( 1 + 3.52iT - 43T^{2} \) |
| 47 | \( 1 + 5.06T + 47T^{2} \) |
| 53 | \( 1 + 5.24iT - 53T^{2} \) |
| 59 | \( 1 + 3.15T + 59T^{2} \) |
| 61 | \( 1 - 4.90T + 61T^{2} \) |
| 67 | \( 1 + 10.7iT - 67T^{2} \) |
| 71 | \( 1 + 4.54T + 71T^{2} \) |
| 73 | \( 1 - 9.97T + 73T^{2} \) |
| 79 | \( 1 + 2.13iT - 79T^{2} \) |
| 83 | \( 1 + 12.0T + 83T^{2} \) |
| 89 | \( 1 + 2.45iT - 89T^{2} \) |
| 97 | \( 1 + 0.526T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05201625162724480380685802878, −9.784467309247815068154576145908, −9.106119480224993606248673518934, −8.067044720794076827216077766626, −7.31783383408023008782902169798, −6.55133070752119078543813632975, −5.13651632756299600878503258067, −4.39369780102567112140998026442, −3.23443628606715428426720594420, −2.36689995271946033325933825208,
1.44825054827152608074476316123, 2.54878069647133526291931261927, 3.73940330272555424991556435548, 4.49327425916174975917559941246, 5.87214791261380918209723838188, 6.74978660270449598576825326555, 7.87038111554225394244673140016, 8.789839811021393341537843440712, 9.798262199465248933258209142528, 10.35224461115736730278124148390