Properties

Label 588.2.e.d.491.10
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(491,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,2,0,0,0,0,2,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.312013725601644544.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} - 2x^{8} + 8x^{6} - 8x^{4} - 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.10
Root \(1.13556 + 0.842913i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.d.491.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13556 + 0.842913i) q^{2} +(1.65140 + 0.522368i) q^{3} +(0.578995 + 1.91436i) q^{4} +0.499464i q^{5} +(1.43496 + 1.98517i) q^{6} +(-0.956154 + 2.66191i) q^{8} +(2.45426 + 1.72528i) q^{9} +(-0.421005 + 0.567172i) q^{10} +1.39050 q^{11} +(-0.0438464 + 3.46382i) q^{12} -2.75054 q^{13} +(-0.260904 + 0.824817i) q^{15} +(-3.32953 + 2.21681i) q^{16} -5.82329i q^{17} +(1.33270 + 4.02789i) q^{18} -2.48153i q^{19} +(-0.956154 + 0.289187i) q^{20} +(1.57899 + 1.17207i) q^{22} -5.06405 q^{23} +(-2.96949 + 3.89642i) q^{24} +4.75054 q^{25} +(-3.12340 - 2.31846i) q^{26} +(3.15174 + 4.13116i) q^{27} +6.32275i q^{29} +(-0.991522 + 0.716710i) q^{30} -6.91514i q^{31} +(-5.64946 - 0.289187i) q^{32} +(2.29627 + 0.726352i) q^{33} +(4.90852 - 6.61269i) q^{34} +(-1.88180 + 5.69726i) q^{36} +7.34308 q^{37} +(2.09171 - 2.81793i) q^{38} +(-4.54224 - 1.43679i) q^{39} +(-1.32953 - 0.477565i) q^{40} +5.74438i q^{41} -3.52627i q^{43} +(0.805091 + 2.66191i) q^{44} +(-0.861717 + 1.22582i) q^{45} +(-5.75054 - 4.26855i) q^{46} -5.06405 q^{47} +(-6.65638 + 1.92160i) q^{48} +(5.39452 + 4.00429i) q^{50} +(3.04190 - 9.61659i) q^{51} +(-1.59255 - 5.26551i) q^{52} -5.24491i q^{53} +(0.0967825 + 7.34783i) q^{54} +0.694505i q^{55} +(1.29627 - 4.09801i) q^{57} +(-5.32953 + 7.17987i) q^{58} -3.15174 q^{59} +(-1.73006 - 0.0218997i) q^{60} +4.90852 q^{61} +(5.82886 - 7.85256i) q^{62} +(-6.17154 - 5.09039i) q^{64} -1.37379i q^{65} +(1.99530 + 2.76038i) q^{66} -10.7439i q^{67} +(11.1479 - 3.37165i) q^{68} +(-8.36279 - 2.64530i) q^{69} -4.54224 q^{71} +(-6.93920 + 4.88339i) q^{72} +9.97504 q^{73} +(8.33851 + 6.18958i) q^{74} +(7.84505 + 2.48153i) q^{75} +(4.75054 - 1.43679i) q^{76} +(-3.94690 - 5.46028i) q^{78} -2.13130i q^{79} +(-1.10722 - 1.66298i) q^{80} +(3.04681 + 8.46859i) q^{81} +(-4.84201 + 6.52309i) q^{82} -12.0165 q^{83} +2.90852 q^{85} +(2.97234 - 4.00429i) q^{86} +(-3.30281 + 10.4414i) q^{87} +(-1.32953 + 3.70138i) q^{88} -2.45163i q^{89} +(-2.01179 + 0.665637i) q^{90} +(-2.93206 - 9.69440i) q^{92} +(3.61225 - 11.4197i) q^{93} +(-5.75054 - 4.26855i) q^{94} +1.23944 q^{95} +(-9.17847 - 3.42866i) q^{96} -0.526031 q^{97} +(3.41265 + 2.39900i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} + 2 q^{9} - 10 q^{10} - 12 q^{12} + 12 q^{13} + 10 q^{16} + 10 q^{18} + 14 q^{22} - 14 q^{24} + 12 q^{25} + 14 q^{30} + 10 q^{33} + 4 q^{34} + 22 q^{36} + 8 q^{37} + 34 q^{40} - 18 q^{45}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13556 + 0.842913i 0.802962 + 0.596030i
\(3\) 1.65140 + 0.522368i 0.953438 + 0.301590i
\(4\) 0.578995 + 1.91436i 0.289497 + 0.957179i
\(5\) 0.499464i 0.223367i 0.993744 + 0.111684i \(0.0356243\pi\)
−0.993744 + 0.111684i \(0.964376\pi\)
\(6\) 1.43496 + 1.98517i 0.585818 + 0.810442i
\(7\) 0 0
\(8\) −0.956154 + 2.66191i −0.338051 + 0.941128i
\(9\) 2.45426 + 1.72528i 0.818087 + 0.575094i
\(10\) −0.421005 + 0.567172i −0.133134 + 0.179356i
\(11\) 1.39050 0.419251 0.209626 0.977782i \(-0.432776\pi\)
0.209626 + 0.977782i \(0.432776\pi\)
\(12\) −0.0438464 + 3.46382i −0.0126574 + 0.999920i
\(13\) −2.75054 −0.762861 −0.381431 0.924397i \(-0.624568\pi\)
−0.381431 + 0.924397i \(0.624568\pi\)
\(14\) 0 0
\(15\) −0.260904 + 0.824817i −0.0673652 + 0.212967i
\(16\) −3.32953 + 2.21681i −0.832383 + 0.554202i
\(17\) 5.82329i 1.41235i −0.708035 0.706177i \(-0.750418\pi\)
0.708035 0.706177i \(-0.249582\pi\)
\(18\) 1.33270 + 4.02789i 0.314121 + 0.949383i
\(19\) 2.48153i 0.569302i −0.958631 0.284651i \(-0.908122\pi\)
0.958631 0.284651i \(-0.0918777\pi\)
\(20\) −0.956154 + 0.289187i −0.213802 + 0.0646643i
\(21\) 0 0
\(22\) 1.57899 + 1.17207i 0.336643 + 0.249886i
\(23\) −5.06405 −1.05593 −0.527964 0.849267i \(-0.677044\pi\)
−0.527964 + 0.849267i \(0.677044\pi\)
\(24\) −2.96949 + 3.89642i −0.606145 + 0.795354i
\(25\) 4.75054 0.950107
\(26\) −3.12340 2.31846i −0.612549 0.454688i
\(27\) 3.15174 + 4.13116i 0.606553 + 0.795043i
\(28\) 0 0
\(29\) 6.32275i 1.17411i 0.809549 + 0.587053i \(0.199712\pi\)
−0.809549 + 0.587053i \(0.800288\pi\)
\(30\) −0.991522 + 0.716710i −0.181026 + 0.130853i
\(31\) 6.91514i 1.24200i −0.783812 0.620998i \(-0.786727\pi\)
0.783812 0.620998i \(-0.213273\pi\)
\(32\) −5.64946 0.289187i −0.998692 0.0511216i
\(33\) 2.29627 + 0.726352i 0.399730 + 0.126442i
\(34\) 4.90852 6.61269i 0.841805 1.13407i
\(35\) 0 0
\(36\) −1.88180 + 5.69726i −0.313633 + 0.949544i
\(37\) 7.34308 1.20720 0.603598 0.797289i \(-0.293733\pi\)
0.603598 + 0.797289i \(0.293733\pi\)
\(38\) 2.09171 2.81793i 0.339321 0.457128i
\(39\) −4.54224 1.43679i −0.727341 0.230071i
\(40\) −1.32953 0.477565i −0.210217 0.0755096i
\(41\) 5.74438i 0.897121i 0.893753 + 0.448560i \(0.148063\pi\)
−0.893753 + 0.448560i \(0.851937\pi\)
\(42\) 0 0
\(43\) 3.52627i 0.537751i −0.963175 0.268875i \(-0.913348\pi\)
0.963175 0.268875i \(-0.0866520\pi\)
\(44\) 0.805091 + 2.66191i 0.121372 + 0.401298i
\(45\) −0.861717 + 1.22582i −0.128457 + 0.182734i
\(46\) −5.75054 4.26855i −0.847870 0.629364i
\(47\) −5.06405 −0.738668 −0.369334 0.929297i \(-0.620414\pi\)
−0.369334 + 0.929297i \(0.620414\pi\)
\(48\) −6.65638 + 1.92160i −0.960766 + 0.277359i
\(49\) 0 0
\(50\) 5.39452 + 4.00429i 0.762900 + 0.566292i
\(51\) 3.04190 9.61659i 0.425951 1.34659i
\(52\) −1.59255 5.26551i −0.220846 0.730195i
\(53\) 5.24491i 0.720444i −0.932867 0.360222i \(-0.882701\pi\)
0.932867 0.360222i \(-0.117299\pi\)
\(54\) 0.0967825 + 7.34783i 0.0131704 + 0.999913i
\(55\) 0.694505i 0.0936470i
\(56\) 0 0
\(57\) 1.29627 4.09801i 0.171696 0.542794i
\(58\) −5.32953 + 7.17987i −0.699802 + 0.942763i
\(59\) −3.15174 −0.410322 −0.205161 0.978728i \(-0.565772\pi\)
−0.205161 + 0.978728i \(0.565772\pi\)
\(60\) −1.73006 0.0218997i −0.223349 0.00282724i
\(61\) 4.90852 0.628472 0.314236 0.949345i \(-0.398252\pi\)
0.314236 + 0.949345i \(0.398252\pi\)
\(62\) 5.82886 7.85256i 0.740267 0.997276i
\(63\) 0 0
\(64\) −6.17154 5.09039i −0.771443 0.636299i
\(65\) 1.37379i 0.170398i
\(66\) 1.99530 + 2.76038i 0.245605 + 0.339779i
\(67\) 10.7439i 1.31257i −0.754513 0.656286i \(-0.772127\pi\)
0.754513 0.656286i \(-0.227873\pi\)
\(68\) 11.1479 3.37165i 1.35188 0.408873i
\(69\) −8.36279 2.64530i −1.00676 0.318457i
\(70\) 0 0
\(71\) −4.54224 −0.539065 −0.269532 0.962991i \(-0.586869\pi\)
−0.269532 + 0.962991i \(0.586869\pi\)
\(72\) −6.93920 + 4.88339i −0.817792 + 0.575514i
\(73\) 9.97504 1.16749 0.583745 0.811937i \(-0.301587\pi\)
0.583745 + 0.811937i \(0.301587\pi\)
\(74\) 8.33851 + 6.18958i 0.969332 + 0.719524i
\(75\) 7.84505 + 2.48153i 0.905868 + 0.286542i
\(76\) 4.75054 1.43679i 0.544924 0.164811i
\(77\) 0 0
\(78\) −3.94690 5.46028i −0.446898 0.618255i
\(79\) 2.13130i 0.239790i −0.992787 0.119895i \(-0.961744\pi\)
0.992787 0.119895i \(-0.0382557\pi\)
\(80\) −1.10722 1.66298i −0.123791 0.185927i
\(81\) 3.04681 + 8.46859i 0.338534 + 0.940954i
\(82\) −4.84201 + 6.52309i −0.534711 + 0.720354i
\(83\) −12.0165 −1.31899 −0.659493 0.751710i \(-0.729229\pi\)
−0.659493 + 0.751710i \(0.729229\pi\)
\(84\) 0 0
\(85\) 2.90852 0.315474
\(86\) 2.97234 4.00429i 0.320515 0.431794i
\(87\) −3.30281 + 10.4414i −0.354098 + 1.11944i
\(88\) −1.32953 + 3.70138i −0.141728 + 0.394569i
\(89\) 2.45163i 0.259873i −0.991522 0.129936i \(-0.958523\pi\)
0.991522 0.129936i \(-0.0414773\pi\)
\(90\) −2.01179 + 0.665637i −0.212061 + 0.0701643i
\(91\) 0 0
\(92\) −2.93206 9.69440i −0.305688 1.01071i
\(93\) 3.61225 11.4197i 0.374573 1.18417i
\(94\) −5.75054 4.26855i −0.593122 0.440268i
\(95\) 1.23944 0.127163
\(96\) −9.17847 3.42866i −0.936773 0.349936i
\(97\) −0.526031 −0.0534104 −0.0267052 0.999643i \(-0.508502\pi\)
−0.0267052 + 0.999643i \(0.508502\pi\)
\(98\) 0 0
\(99\) 3.41265 + 2.39900i 0.342984 + 0.241109i
\(100\) 2.75054 + 9.09422i 0.275054 + 0.909422i
\(101\) 16.0961i 1.60162i 0.598920 + 0.800809i \(0.295597\pi\)
−0.598920 + 0.800809i \(0.704403\pi\)
\(102\) 11.5602 8.35616i 1.14463 0.827383i
\(103\) 1.87663i 0.184910i 0.995717 + 0.0924550i \(0.0294714\pi\)
−0.995717 + 0.0924550i \(0.970529\pi\)
\(104\) 2.62993 7.32168i 0.257886 0.717950i
\(105\) 0 0
\(106\) 4.42101 5.95591i 0.429406 0.578490i
\(107\) 7.27848 0.703637 0.351819 0.936068i \(-0.385563\pi\)
0.351819 + 0.936068i \(0.385563\pi\)
\(108\) −6.08368 + 8.42549i −0.585403 + 0.810743i
\(109\) −1.84201 −0.176433 −0.0882163 0.996101i \(-0.528117\pi\)
−0.0882163 + 0.996101i \(0.528117\pi\)
\(110\) −0.585407 + 0.788652i −0.0558164 + 0.0751950i
\(111\) 12.1264 + 3.83579i 1.15099 + 0.364077i
\(112\) 0 0
\(113\) 10.2728i 0.966382i −0.875515 0.483191i \(-0.839478\pi\)
0.875515 0.483191i \(-0.160522\pi\)
\(114\) 4.92626 3.56089i 0.461386 0.333508i
\(115\) 2.52931i 0.235860i
\(116\) −12.1040 + 3.66084i −1.12383 + 0.339900i
\(117\) −6.75054 4.74545i −0.624087 0.438717i
\(118\) −3.57899 2.65665i −0.329473 0.244564i
\(119\) 0 0
\(120\) −1.94612 1.48316i −0.177656 0.135393i
\(121\) −9.06651 −0.824229
\(122\) 5.57393 + 4.13746i 0.504640 + 0.374588i
\(123\) −3.00068 + 9.48628i −0.270562 + 0.855349i
\(124\) 13.2381 4.00383i 1.18881 0.359555i
\(125\) 4.87005i 0.435590i
\(126\) 0 0
\(127\) 1.51224i 0.134190i −0.997747 0.0670949i \(-0.978627\pi\)
0.997747 0.0670949i \(-0.0213730\pi\)
\(128\) −2.71740 10.9825i −0.240186 0.970727i
\(129\) 1.84201 5.82329i 0.162180 0.512712i
\(130\) 1.15799 1.56003i 0.101562 0.136823i
\(131\) −6.65037 −0.581045 −0.290523 0.956868i \(-0.593829\pi\)
−0.290523 + 0.956868i \(0.593829\pi\)
\(132\) −0.0609683 + 4.81644i −0.00530661 + 0.419217i
\(133\) 0 0
\(134\) 9.05614 12.2003i 0.782331 1.05395i
\(135\) −2.06337 + 1.57418i −0.177587 + 0.135484i
\(136\) 15.5011 + 5.56796i 1.32921 + 0.477448i
\(137\) 12.1917i 1.04161i −0.853676 0.520805i \(-0.825632\pi\)
0.853676 0.520805i \(-0.174368\pi\)
\(138\) −7.26669 10.0530i −0.618582 0.855768i
\(139\) 0.0477837i 0.00405296i 0.999998 + 0.00202648i \(0.000645050\pi\)
−0.999998 + 0.00202648i \(0.999355\pi\)
\(140\) 0 0
\(141\) −8.36279 2.64530i −0.704274 0.222774i
\(142\) −5.15799 3.82872i −0.432849 0.321299i
\(143\) −3.82461 −0.319830
\(144\) −11.9962 0.303752i −0.999680 0.0253127i
\(145\) −3.15799 −0.262257
\(146\) 11.3273 + 8.40809i 0.937451 + 0.695859i
\(147\) 0 0
\(148\) 4.25161 + 14.0573i 0.349480 + 1.15550i
\(149\) 2.29381i 0.187917i 0.995576 + 0.0939583i \(0.0299520\pi\)
−0.995576 + 0.0939583i \(0.970048\pi\)
\(150\) 6.81681 + 9.43062i 0.556590 + 0.770007i
\(151\) 13.1358i 1.06897i 0.845177 + 0.534487i \(0.179495\pi\)
−0.845177 + 0.534487i \(0.820505\pi\)
\(152\) 6.60561 + 2.37272i 0.535786 + 0.192453i
\(153\) 10.0468 14.2919i 0.812236 1.15543i
\(154\) 0 0
\(155\) 3.45387 0.277421
\(156\) 0.120601 9.52737i 0.00965580 0.762800i
\(157\) −8.40960 −0.671159 −0.335579 0.942012i \(-0.608932\pi\)
−0.335579 + 0.942012i \(0.608932\pi\)
\(158\) 1.79650 2.42022i 0.142922 0.192542i
\(159\) 2.73978 8.66146i 0.217278 0.686899i
\(160\) 0.144439 2.82170i 0.0114189 0.223075i
\(161\) 0 0
\(162\) −3.67845 + 12.1848i −0.289006 + 0.957327i
\(163\) 12.3599i 0.968099i 0.875041 + 0.484050i \(0.160835\pi\)
−0.875041 + 0.484050i \(0.839165\pi\)
\(164\) −10.9968 + 3.32596i −0.858705 + 0.259714i
\(165\) −0.362787 + 1.14691i −0.0282429 + 0.0892866i
\(166\) −13.6455 10.1289i −1.05910 0.786155i
\(167\) 2.36549 0.183047 0.0915237 0.995803i \(-0.470826\pi\)
0.0915237 + 0.995803i \(0.470826\pi\)
\(168\) 0 0
\(169\) −5.43456 −0.418043
\(170\) 3.30281 + 2.45163i 0.253314 + 0.188032i
\(171\) 4.28134 6.09033i 0.327402 0.465739i
\(172\) 6.75054 2.04169i 0.514723 0.155677i
\(173\) 9.56980i 0.727579i 0.931481 + 0.363789i \(0.118517\pi\)
−0.931481 + 0.363789i \(0.881483\pi\)
\(174\) −12.5517 + 9.07287i −0.951545 + 0.687813i
\(175\) 0 0
\(176\) −4.62971 + 3.08247i −0.348977 + 0.232350i
\(177\) −5.20480 1.64637i −0.391217 0.123749i
\(178\) 2.06651 2.78398i 0.154892 0.208668i
\(179\) 20.7541 1.55124 0.775619 0.631202i \(-0.217438\pi\)
0.775619 + 0.631202i \(0.217438\pi\)
\(180\) −2.84558 0.939892i −0.212097 0.0700554i
\(181\) 6.43456 0.478277 0.239138 0.970985i \(-0.423135\pi\)
0.239138 + 0.970985i \(0.423135\pi\)
\(182\) 0 0
\(183\) 8.10595 + 2.56406i 0.599209 + 0.189541i
\(184\) 4.84201 13.4801i 0.356958 0.993763i
\(185\) 3.66761i 0.269648i
\(186\) 13.7277 9.92293i 1.00657 0.727584i
\(187\) 8.09727i 0.592131i
\(188\) −2.93206 9.69440i −0.213842 0.707037i
\(189\) 0 0
\(190\) 1.40745 + 1.04474i 0.102107 + 0.0757932i
\(191\) −17.5338 −1.26870 −0.634350 0.773046i \(-0.718732\pi\)
−0.634350 + 0.773046i \(0.718732\pi\)
\(192\) −7.53264 11.6301i −0.543621 0.839331i
\(193\) −2.18509 −0.157286 −0.0786432 0.996903i \(-0.525059\pi\)
−0.0786432 + 0.996903i \(0.525059\pi\)
\(194\) −0.597340 0.443399i −0.0428865 0.0318342i
\(195\) 0.717627 2.26869i 0.0513903 0.162464i
\(196\) 0 0
\(197\) 6.27706i 0.447222i −0.974678 0.223611i \(-0.928215\pi\)
0.974678 0.223611i \(-0.0717845\pi\)
\(198\) 1.85312 + 5.60078i 0.131695 + 0.398030i
\(199\) 0.865522i 0.0613552i 0.999529 + 0.0306776i \(0.00976652\pi\)
−0.999529 + 0.0306776i \(0.990233\pi\)
\(200\) −4.54224 + 12.6455i −0.321185 + 0.894172i
\(201\) 5.61225 17.7424i 0.395858 1.25145i
\(202\) −13.5676 + 18.2781i −0.954612 + 1.28604i
\(203\) 0 0
\(204\) 20.1708 + 0.255330i 1.41224 + 0.0178767i
\(205\) −2.86911 −0.200387
\(206\) −1.58184 + 2.13103i −0.110212 + 0.148476i
\(207\) −12.4285 8.73691i −0.863841 0.607257i
\(208\) 9.15799 6.09740i 0.634992 0.422779i
\(209\) 3.45056i 0.238680i
\(210\) 0 0
\(211\) 3.90417i 0.268774i 0.990929 + 0.134387i \(0.0429065\pi\)
−0.990929 + 0.134387i \(0.957094\pi\)
\(212\) 10.0406 3.03678i 0.689594 0.208567i
\(213\) −7.50107 2.37272i −0.513965 0.162576i
\(214\) 8.26516 + 6.13513i 0.564994 + 0.419389i
\(215\) 1.76124 0.120116
\(216\) −14.0103 + 4.43963i −0.953283 + 0.302079i
\(217\) 0 0
\(218\) −2.09171 1.55265i −0.141669 0.105159i
\(219\) 16.4728 + 5.21065i 1.11313 + 0.352103i
\(220\) −1.32953 + 0.402115i −0.0896369 + 0.0271106i
\(221\) 16.0172i 1.07743i
\(222\) 10.5370 + 14.5773i 0.707197 + 0.978362i
\(223\) 23.5017i 1.57379i −0.617085 0.786896i \(-0.711687\pi\)
0.617085 0.786896i \(-0.288313\pi\)
\(224\) 0 0
\(225\) 11.6591 + 8.19601i 0.777271 + 0.546401i
\(226\) 8.65906 11.6654i 0.575992 0.775968i
\(227\) 19.1678 1.27221 0.636107 0.771601i \(-0.280544\pi\)
0.636107 + 0.771601i \(0.280544\pi\)
\(228\) 8.59558 + 0.108806i 0.569256 + 0.00720586i
\(229\) −11.4761 −0.758363 −0.379181 0.925322i \(-0.623794\pi\)
−0.379181 + 0.925322i \(0.623794\pi\)
\(230\) 2.13199 2.87219i 0.140579 0.189386i
\(231\) 0 0
\(232\) −16.8306 6.04552i −1.10498 0.396908i
\(233\) 20.2174i 1.32449i 0.749288 + 0.662245i \(0.230396\pi\)
−0.749288 + 0.662245i \(0.769604\pi\)
\(234\) −3.66564 11.0789i −0.239630 0.724248i
\(235\) 2.52931i 0.164994i
\(236\) −1.82484 6.03356i −0.118787 0.392752i
\(237\) 1.11332 3.51963i 0.0723181 0.228625i
\(238\) 0 0
\(239\) −6.90774 −0.446824 −0.223412 0.974724i \(-0.571720\pi\)
−0.223412 + 0.974724i \(0.571720\pi\)
\(240\) −0.959770 3.32463i −0.0619529 0.214604i
\(241\) −8.06651 −0.519610 −0.259805 0.965661i \(-0.583658\pi\)
−0.259805 + 0.965661i \(0.583658\pi\)
\(242\) −10.2956 7.64228i −0.661825 0.491265i
\(243\) 0.607785 + 15.5766i 0.0389894 + 0.999240i
\(244\) 2.84201 + 9.39667i 0.181941 + 0.601560i
\(245\) 0 0
\(246\) −11.4036 + 8.24293i −0.727065 + 0.525550i
\(247\) 6.82553i 0.434298i
\(248\) 18.4075 + 6.61194i 1.16888 + 0.419859i
\(249\) −19.8442 6.27706i −1.25757 0.397793i
\(250\) −4.10503 + 5.53023i −0.259625 + 0.349763i
\(251\) −20.4073 −1.28810 −0.644048 0.764985i \(-0.722746\pi\)
−0.644048 + 0.764985i \(0.722746\pi\)
\(252\) 0 0
\(253\) −7.04155 −0.442699
\(254\) 1.27469 1.71724i 0.0799811 0.107749i
\(255\) 4.80315 + 1.51932i 0.300785 + 0.0951436i
\(256\) 6.17154 14.7618i 0.385721 0.922615i
\(257\) 27.2100i 1.69731i 0.528947 + 0.848655i \(0.322587\pi\)
−0.528947 + 0.848655i \(0.677413\pi\)
\(258\) 7.00024 5.06004i 0.435816 0.315024i
\(259\) 0 0
\(260\) 2.62993 0.795420i 0.163102 0.0493299i
\(261\) −10.9085 + 15.5177i −0.675221 + 0.960521i
\(262\) −7.55189 5.60568i −0.466558 0.346320i
\(263\) −3.60493 −0.222290 −0.111145 0.993804i \(-0.535452\pi\)
−0.111145 + 0.993804i \(0.535452\pi\)
\(264\) −4.12908 + 5.41797i −0.254127 + 0.333453i
\(265\) 2.61965 0.160924
\(266\) 0 0
\(267\) 1.28066 4.04864i 0.0783749 0.247772i
\(268\) 20.5676 6.22064i 1.25637 0.379986i
\(269\) 26.1653i 1.59533i −0.603102 0.797664i \(-0.706069\pi\)
0.603102 0.797664i \(-0.293931\pi\)
\(270\) −3.66998 + 0.0483394i −0.223348 + 0.00294184i
\(271\) 23.0619i 1.40091i 0.713696 + 0.700455i \(0.247020\pi\)
−0.713696 + 0.700455i \(0.752980\pi\)
\(272\) 12.9091 + 19.3888i 0.782729 + 1.17562i
\(273\) 0 0
\(274\) 10.2766 13.8444i 0.620830 0.836373i
\(275\) 6.60561 0.398333
\(276\) 0.222040 17.5410i 0.0133652 1.05584i
\(277\) −20.2910 −1.21917 −0.609585 0.792721i \(-0.708664\pi\)
−0.609585 + 0.792721i \(0.708664\pi\)
\(278\) −0.0402775 + 0.0542613i −0.00241569 + 0.00325438i
\(279\) 11.9306 16.9716i 0.714264 1.01606i
\(280\) 0 0
\(281\) 27.6637i 1.65028i 0.564929 + 0.825140i \(0.308904\pi\)
−0.564929 + 0.825140i \(0.691096\pi\)
\(282\) −7.26669 10.0530i −0.432725 0.598648i
\(283\) 17.3707i 1.03258i 0.856413 + 0.516291i \(0.172688\pi\)
−0.856413 + 0.516291i \(0.827312\pi\)
\(284\) −2.62993 8.69547i −0.156058 0.515981i
\(285\) 2.04681 + 0.647442i 0.121242 + 0.0383512i
\(286\) −4.34308 3.22382i −0.256812 0.190628i
\(287\) 0 0
\(288\) −13.3663 10.4566i −0.787618 0.616164i
\(289\) −16.9107 −0.994745
\(290\) −3.58609 2.66191i −0.210582 0.156313i
\(291\) −0.868689 0.274782i −0.0509235 0.0161080i
\(292\) 5.77550 + 19.0958i 0.337985 + 1.11750i
\(293\) 19.9672i 1.16650i 0.812294 + 0.583248i \(0.198218\pi\)
−0.812294 + 0.583248i \(0.801782\pi\)
\(294\) 0 0
\(295\) 1.57418i 0.0916525i
\(296\) −7.02111 + 19.5466i −0.408094 + 1.13612i
\(297\) 4.38249 + 5.74438i 0.254298 + 0.333323i
\(298\) −1.93349 + 2.60476i −0.112004 + 0.150890i
\(299\) 13.9288 0.805526
\(300\) −0.208294 + 16.4550i −0.0120258 + 0.950031i
\(301\) 0 0
\(302\) −11.0723 + 14.9165i −0.637141 + 0.858346i
\(303\) −8.40808 + 26.5811i −0.483031 + 1.52704i
\(304\) 5.50107 + 8.26233i 0.315508 + 0.473877i
\(305\) 2.45163i 0.140380i
\(306\) 23.4556 7.76070i 1.34087 0.443650i
\(307\) 14.1529i 0.807746i 0.914815 + 0.403873i \(0.132336\pi\)
−0.914815 + 0.403873i \(0.867664\pi\)
\(308\) 0 0
\(309\) −0.980294 + 3.09908i −0.0557670 + 0.176300i
\(310\) 3.92208 + 2.91131i 0.222759 + 0.165351i
\(311\) −24.5549 −1.39238 −0.696190 0.717857i \(-0.745123\pi\)
−0.696190 + 0.717857i \(0.745123\pi\)
\(312\) 8.16770 10.7172i 0.462405 0.606745i
\(313\) −0.0520623 −0.00294274 −0.00147137 0.999999i \(-0.500468\pi\)
−0.00147137 + 0.999999i \(0.500468\pi\)
\(314\) −9.54960 7.08856i −0.538915 0.400031i
\(315\) 0 0
\(316\) 4.08007 1.23401i 0.229522 0.0694185i
\(317\) 6.77653i 0.380608i −0.981725 0.190304i \(-0.939053\pi\)
0.981725 0.190304i \(-0.0609473\pi\)
\(318\) 10.4120 7.52622i 0.583878 0.422049i
\(319\) 8.79177i 0.492245i
\(320\) 2.54247 3.08247i 0.142128 0.172315i
\(321\) 12.0197 + 3.80205i 0.670875 + 0.212210i
\(322\) 0 0
\(323\) −14.4507 −0.804056
\(324\) −14.4478 + 10.7359i −0.802657 + 0.596442i
\(325\) −13.0665 −0.724800
\(326\) −10.4183 + 14.0354i −0.577016 + 0.777347i
\(327\) −3.04190 0.962208i −0.168218 0.0532102i
\(328\) −15.2910 5.49251i −0.844305 0.303273i
\(329\) 0 0
\(330\) −1.37871 + 0.996584i −0.0758955 + 0.0548601i
\(331\) 17.8920i 0.983431i −0.870756 0.491715i \(-0.836370\pi\)
0.870756 0.491715i \(-0.163630\pi\)
\(332\) −6.95752 23.0040i −0.381843 1.26251i
\(333\) 18.0218 + 12.6689i 0.987591 + 0.694250i
\(334\) 2.68616 + 1.99391i 0.146980 + 0.109102i
\(335\) 5.36618 0.293185
\(336\) 0 0
\(337\) 7.09362 0.386414 0.193207 0.981158i \(-0.438111\pi\)
0.193207 + 0.981158i \(0.438111\pi\)
\(338\) −6.17127 4.58086i −0.335673 0.249166i
\(339\) 5.36618 16.9645i 0.291451 0.921385i
\(340\) 1.68402 + 5.56796i 0.0913288 + 0.301965i
\(341\) 9.61549i 0.520708i
\(342\) 9.99533 3.30714i 0.540486 0.178829i
\(343\) 0 0
\(344\) 9.38661 + 3.37165i 0.506092 + 0.181787i
\(345\) 1.32123 4.17692i 0.0711328 0.224878i
\(346\) −8.06651 + 10.8671i −0.433659 + 0.584218i
\(347\) 9.19079 0.493387 0.246694 0.969093i \(-0.420656\pi\)
0.246694 + 0.969093i \(0.420656\pi\)
\(348\) −21.9009 0.277230i −1.17401 0.0148611i
\(349\) 22.1330 1.18475 0.592377 0.805661i \(-0.298190\pi\)
0.592377 + 0.805661i \(0.298190\pi\)
\(350\) 0 0
\(351\) −8.66898 11.3629i −0.462716 0.606507i
\(352\) −7.85556 0.402115i −0.418703 0.0214328i
\(353\) 10.7266i 0.570917i 0.958391 + 0.285458i \(0.0921459\pi\)
−0.958391 + 0.285458i \(0.907854\pi\)
\(354\) −4.52261 6.25675i −0.240374 0.332542i
\(355\) 2.26869i 0.120409i
\(356\) 4.69330 1.41948i 0.248745 0.0752325i
\(357\) 0 0
\(358\) 23.5676 + 17.4939i 1.24559 + 0.924584i
\(359\) −3.60493 −0.190261 −0.0951305 0.995465i \(-0.530327\pi\)
−0.0951305 + 0.995465i \(0.530327\pi\)
\(360\) −2.43908 3.46588i −0.128551 0.182668i
\(361\) 12.8420 0.675895
\(362\) 7.30683 + 5.42377i 0.384038 + 0.285067i
\(363\) −14.9725 4.73606i −0.785851 0.248579i
\(364\) 0 0
\(365\) 4.98218i 0.260779i
\(366\) 7.04352 + 9.74426i 0.368171 + 0.509340i
\(367\) 15.0266i 0.784381i 0.919884 + 0.392190i \(0.128283\pi\)
−0.919884 + 0.392190i \(0.871717\pi\)
\(368\) 16.8609 11.2260i 0.878936 0.585197i
\(369\) −9.91067 + 14.0982i −0.515929 + 0.733923i
\(370\) −3.09148 + 4.16479i −0.160718 + 0.216517i
\(371\) 0 0
\(372\) 23.9528 + 0.303204i 1.24190 + 0.0157204i
\(373\) 2.65692 0.137570 0.0687850 0.997632i \(-0.478088\pi\)
0.0687850 + 0.997632i \(0.478088\pi\)
\(374\) 6.82530 9.19494i 0.352928 0.475459i
\(375\) −2.54396 + 8.04241i −0.131369 + 0.415308i
\(376\) 4.84201 13.4801i 0.249708 0.695181i
\(377\) 17.3909i 0.895679i
\(378\) 0 0
\(379\) 17.7150i 0.909957i 0.890502 + 0.454979i \(0.150353\pi\)
−0.890502 + 0.454979i \(0.849647\pi\)
\(380\) 0.717627 + 2.37272i 0.0368135 + 0.121718i
\(381\) 0.789948 2.49732i 0.0404703 0.127942i
\(382\) −19.9107 14.7795i −1.01872 0.756183i
\(383\) −32.9217 −1.68222 −0.841111 0.540862i \(-0.818098\pi\)
−0.841111 + 0.540862i \(0.818098\pi\)
\(384\) 1.24940 19.5560i 0.0637583 0.997965i
\(385\) 0 0
\(386\) −2.48130 1.84184i −0.126295 0.0937473i
\(387\) 6.08380 8.65438i 0.309257 0.439927i
\(388\) −0.304569 1.00701i −0.0154622 0.0511233i
\(389\) 6.82222i 0.345900i −0.984931 0.172950i \(-0.944670\pi\)
0.984931 0.172950i \(-0.0553299\pi\)
\(390\) 2.72722 1.97134i 0.138098 0.0998224i
\(391\) 29.4894i 1.49134i
\(392\) 0 0
\(393\) −10.9824 3.47394i −0.553991 0.175237i
\(394\) 5.29102 7.12798i 0.266558 0.359103i
\(395\) 1.06451 0.0535612
\(396\) −2.61664 + 7.92204i −0.131491 + 0.398097i
\(397\) 20.8442 1.04614 0.523069 0.852290i \(-0.324787\pi\)
0.523069 + 0.852290i \(0.324787\pi\)
\(398\) −0.729560 + 0.982853i −0.0365695 + 0.0492660i
\(399\) 0 0
\(400\) −15.8170 + 10.5310i −0.790852 + 0.526551i
\(401\) 3.82543i 0.191033i −0.995428 0.0955164i \(-0.969550\pi\)
0.995428 0.0955164i \(-0.0304502\pi\)
\(402\) 21.3284 15.4170i 1.06376 0.768928i
\(403\) 19.0203i 0.947471i
\(404\) −30.8136 + 9.31954i −1.53304 + 0.463664i
\(405\) −4.22976 + 1.52177i −0.210178 + 0.0756175i
\(406\) 0 0
\(407\) 10.2105 0.506118
\(408\) 22.6900 + 17.2922i 1.12332 + 0.856092i
\(409\) 3.86911 0.191315 0.0956576 0.995414i \(-0.469505\pi\)
0.0956576 + 0.995414i \(0.469505\pi\)
\(410\) −3.25805 2.41841i −0.160904 0.119437i
\(411\) 6.36857 20.1335i 0.314139 0.993110i
\(412\) −3.59255 + 1.08656i −0.176992 + 0.0535310i
\(413\) 0 0
\(414\) −6.74886 20.3974i −0.331689 1.00248i
\(415\) 6.00184i 0.294619i
\(416\) 15.5390 + 0.795420i 0.761864 + 0.0389987i
\(417\) −0.0249607 + 0.0789102i −0.00122233 + 0.00386425i
\(418\) 2.90852 3.91832i 0.142261 0.191651i
\(419\) −13.5133 −0.660170 −0.330085 0.943951i \(-0.607077\pi\)
−0.330085 + 0.943951i \(0.607077\pi\)
\(420\) 0 0
\(421\) 11.3825 0.554749 0.277374 0.960762i \(-0.410536\pi\)
0.277374 + 0.960762i \(0.410536\pi\)
\(422\) −3.29087 + 4.43342i −0.160197 + 0.215815i
\(423\) −12.4285 8.73691i −0.604295 0.424803i
\(424\) 13.9615 + 5.01494i 0.678030 + 0.243547i
\(425\) 27.6637i 1.34189i
\(426\) −6.51792 9.01712i −0.315794 0.436881i
\(427\) 0 0
\(428\) 4.21420 + 13.9336i 0.203701 + 0.673507i
\(429\) −6.31598 1.99786i −0.304938 0.0964575i
\(430\) 2.00000 + 1.48458i 0.0964486 + 0.0715926i
\(431\) −25.9245 −1.24874 −0.624370 0.781129i \(-0.714644\pi\)
−0.624370 + 0.781129i \(0.714644\pi\)
\(432\) −19.6518 6.76803i −0.945498 0.325627i
\(433\) −23.3825 −1.12369 −0.561845 0.827242i \(-0.689908\pi\)
−0.561845 + 0.827242i \(0.689908\pi\)
\(434\) 0 0
\(435\) −5.21511 1.64963i −0.250046 0.0790939i
\(436\) −1.06651 3.52627i −0.0510768 0.168878i
\(437\) 12.5666i 0.601142i
\(438\) 14.3137 + 19.8021i 0.683937 + 0.946183i
\(439\) 17.6732i 0.843494i −0.906714 0.421747i \(-0.861417\pi\)
0.906714 0.421747i \(-0.138583\pi\)
\(440\) −1.84871 0.664053i −0.0881338 0.0316575i
\(441\) 0 0
\(442\) −13.5011 + 18.1884i −0.642180 + 0.865136i
\(443\) 35.1362 1.66937 0.834685 0.550727i \(-0.185650\pi\)
0.834685 + 0.550727i \(0.185650\pi\)
\(444\) −0.321967 + 25.4351i −0.0152799 + 1.20710i
\(445\) 1.22450 0.0580471
\(446\) 19.8099 26.6876i 0.938027 1.26370i
\(447\) −1.19822 + 3.78801i −0.0566737 + 0.179167i
\(448\) 0 0
\(449\) 5.52733i 0.260851i −0.991458 0.130425i \(-0.958366\pi\)
0.991458 0.130425i \(-0.0416343\pi\)
\(450\) 6.33104 + 19.1346i 0.298448 + 0.902016i
\(451\) 7.98755i 0.376119i
\(452\) 19.6658 5.94789i 0.925000 0.279765i
\(453\) −6.86172 + 21.6925i −0.322392 + 1.01920i
\(454\) 21.7662 + 16.1568i 1.02154 + 0.758277i
\(455\) 0 0
\(456\) 9.66909 + 7.36889i 0.452797 + 0.345080i
\(457\) 23.9522 1.12044 0.560219 0.828345i \(-0.310717\pi\)
0.560219 + 0.828345i \(0.310717\pi\)
\(458\) −13.0318 9.67336i −0.608937 0.452007i
\(459\) 24.0570 18.3535i 1.12288 0.856668i
\(460\) 4.84201 1.46446i 0.225760 0.0682808i
\(461\) 2.99679i 0.139574i −0.997562 0.0697871i \(-0.977768\pi\)
0.997562 0.0697871i \(-0.0222320\pi\)
\(462\) 0 0
\(463\) 22.4152i 1.04172i 0.853642 + 0.520861i \(0.174389\pi\)
−0.853642 + 0.520861i \(0.825611\pi\)
\(464\) −14.0163 21.0518i −0.650691 0.977305i
\(465\) 5.70373 + 1.80419i 0.264504 + 0.0836674i
\(466\) −17.0416 + 22.9581i −0.789435 + 1.06352i
\(467\) 12.0613 0.558130 0.279065 0.960272i \(-0.409975\pi\)
0.279065 + 0.960272i \(0.409975\pi\)
\(468\) 5.17596 15.6705i 0.239259 0.724370i
\(469\) 0 0
\(470\) 2.13199 2.87219i 0.0983414 0.132484i
\(471\) −13.8876 4.39291i −0.639908 0.202414i
\(472\) 3.01355 8.38966i 0.138710 0.386165i
\(473\) 4.90327i 0.225452i
\(474\) 4.23099 3.05832i 0.194336 0.140473i
\(475\) 11.7886i 0.540898i
\(476\) 0 0
\(477\) 9.04895 12.8724i 0.414323 0.589386i
\(478\) −7.84415 5.82262i −0.358783 0.266321i
\(479\) 13.4070 0.612583 0.306292 0.951938i \(-0.400912\pi\)
0.306292 + 0.951938i \(0.400912\pi\)
\(480\) 1.71250 4.58432i 0.0781644 0.209245i
\(481\) −20.1974 −0.920922
\(482\) −9.16001 6.79937i −0.417227 0.309703i
\(483\) 0 0
\(484\) −5.24946 17.3566i −0.238612 0.788934i
\(485\) 0.262734i 0.0119301i
\(486\) −12.4395 + 18.2005i −0.564269 + 0.825591i
\(487\) 12.2083i 0.553212i −0.960983 0.276606i \(-0.910790\pi\)
0.960983 0.276606i \(-0.0892096\pi\)
\(488\) −4.69330 + 13.0661i −0.212456 + 0.591473i
\(489\) −6.45640 + 20.4111i −0.291969 + 0.923023i
\(490\) 0 0
\(491\) 39.8981 1.80058 0.900288 0.435294i \(-0.143356\pi\)
0.900288 + 0.435294i \(0.143356\pi\)
\(492\) −19.8975 0.251870i −0.897049 0.0113552i
\(493\) 36.8192 1.65825
\(494\) −5.75333 + 7.75081i −0.258855 + 0.348725i
\(495\) −1.19822 + 1.70450i −0.0538558 + 0.0766114i
\(496\) 15.3295 + 23.0242i 0.688316 + 1.03382i
\(497\) 0 0
\(498\) −17.2432 23.8549i −0.772687 1.06896i
\(499\) 8.47517i 0.379401i −0.981842 0.189700i \(-0.939248\pi\)
0.981842 0.189700i \(-0.0607516\pi\)
\(500\) −9.32301 + 2.81973i −0.416938 + 0.126102i
\(501\) 3.90638 + 1.23566i 0.174524 + 0.0552052i
\(502\) −23.1737 17.2016i −1.03429 0.767743i
\(503\) 42.5519 1.89730 0.948648 0.316334i \(-0.102452\pi\)
0.948648 + 0.316334i \(0.102452\pi\)
\(504\) 0 0
\(505\) −8.03941 −0.357749
\(506\) −7.99611 5.93542i −0.355470 0.263862i
\(507\) −8.97464 2.83884i −0.398578 0.126077i
\(508\) 2.89497 0.875581i 0.128444 0.0388476i
\(509\) 17.2071i 0.762692i −0.924432 0.381346i \(-0.875461\pi\)
0.924432 0.381346i \(-0.124539\pi\)
\(510\) 4.17361 + 5.77392i 0.184810 + 0.255673i
\(511\) 0 0
\(512\) 19.4511 11.5609i 0.859626 0.510924i
\(513\) 10.2516 7.82114i 0.452619 0.345312i
\(514\) −22.9356 + 30.8985i −1.01165 + 1.36288i
\(515\) −0.937311 −0.0413029
\(516\) 12.2144 + 0.154614i 0.537708 + 0.00680650i
\(517\) −7.04155 −0.309687
\(518\) 0 0
\(519\) −4.99896 + 15.8036i −0.219430 + 0.693701i
\(520\) 3.65692 + 1.31356i 0.160367 + 0.0576034i
\(521\) 10.9436i 0.479448i −0.970841 0.239724i \(-0.922943\pi\)
0.970841 0.239724i \(-0.0770569\pi\)
\(522\) −25.4674 + 8.42634i −1.11468 + 0.368811i
\(523\) 5.53433i 0.241999i 0.992653 + 0.121000i \(0.0386100\pi\)
−0.992653 + 0.121000i \(0.961390\pi\)
\(524\) −3.85053 12.7312i −0.168211 0.556164i
\(525\) 0 0
\(526\) −4.09362 3.03864i −0.178490 0.132491i
\(527\) −40.2689 −1.75414
\(528\) −9.25569 + 2.67198i −0.402802 + 0.116283i
\(529\) 2.64461 0.114983
\(530\) 2.97477 + 2.20814i 0.129216 + 0.0959153i
\(531\) −7.73521 5.43764i −0.335679 0.235974i
\(532\) 0 0
\(533\) 15.8001i 0.684379i
\(534\) 4.86691 3.51799i 0.210612 0.152238i
\(535\) 3.63534i 0.157170i
\(536\) 28.5992 + 10.2728i 1.23530 + 0.443716i
\(537\) 34.2735 + 10.8413i 1.47901 + 0.467837i
\(538\) 22.0551 29.7123i 0.950863 1.28099i
\(539\) 0 0
\(540\) −4.20823 3.03858i −0.181093 0.130760i
\(541\) 12.5282 0.538628 0.269314 0.963052i \(-0.413203\pi\)
0.269314 + 0.963052i \(0.413203\pi\)
\(542\) −19.4392 + 26.1882i −0.834984 + 1.12488i
\(543\) 10.6260 + 3.36121i 0.456007 + 0.144243i
\(544\) −1.68402 + 32.8984i −0.0722018 + 1.41051i
\(545\) 0.920019i 0.0394093i
\(546\) 0 0
\(547\) 37.4911i 1.60300i −0.597992 0.801502i \(-0.704034\pi\)
0.597992 0.801502i \(-0.295966\pi\)
\(548\) 23.3393 7.05895i 0.997006 0.301543i
\(549\) 12.0468 + 8.46859i 0.514145 + 0.361430i
\(550\) 7.50107 + 5.56796i 0.319847 + 0.237418i
\(551\) 15.6901 0.668420
\(552\) 15.0377 19.7317i 0.640045 0.839836i
\(553\) 0 0
\(554\) −23.0417 17.1036i −0.978947 0.726661i
\(555\) −1.91584 + 6.05670i −0.0813230 + 0.257093i
\(556\) −0.0914752 + 0.0276665i −0.00387941 + 0.00117332i
\(557\) 30.0697i 1.27409i −0.770825 0.637046i \(-0.780156\pi\)
0.770825 0.637046i \(-0.219844\pi\)
\(558\) 27.8534 9.21582i 1.17913 0.390137i
\(559\) 9.69912i 0.410229i
\(560\) 0 0
\(561\) 4.22976 13.3719i 0.178581 0.564560i
\(562\) −23.3181 + 31.4138i −0.983616 + 1.32511i
\(563\) 6.83911 0.288234 0.144117 0.989561i \(-0.453966\pi\)
0.144117 + 0.989561i \(0.453966\pi\)
\(564\) 0.222040 17.5410i 0.00934958 0.738609i
\(565\) 5.13089 0.215858
\(566\) −14.6420 + 19.7255i −0.615449 + 0.829124i
\(567\) 0 0
\(568\) 4.34308 12.0910i 0.182232 0.507329i
\(569\) 33.4870i 1.40385i −0.712252 0.701924i \(-0.752324\pi\)
0.712252 0.701924i \(-0.247676\pi\)
\(570\) 1.77854 + 2.46049i 0.0744947 + 0.103059i
\(571\) 27.9973i 1.17165i −0.810438 0.585825i \(-0.800771\pi\)
0.810438 0.585825i \(-0.199229\pi\)
\(572\) −2.21443 7.32168i −0.0925901 0.306135i
\(573\) −28.9553 9.15909i −1.20963 0.382627i
\(574\) 0 0
\(575\) −24.0570 −1.00324
\(576\) −6.36422 23.1408i −0.265176 0.964200i
\(577\) −37.6362 −1.56682 −0.783409 0.621507i \(-0.786521\pi\)
−0.783409 + 0.621507i \(0.786521\pi\)
\(578\) −19.2031 14.2542i −0.798743 0.592898i
\(579\) −3.60847 1.14142i −0.149963 0.0474359i
\(580\) −1.82846 6.04552i −0.0759227 0.251027i
\(581\) 0 0
\(582\) −0.754832 1.04426i −0.0312888 0.0432860i
\(583\) 7.29304i 0.302047i
\(584\) −9.53767 + 26.5527i −0.394672 + 1.09876i
\(585\) 2.37018 3.37165i 0.0979950 0.139401i
\(586\) −16.8306 + 22.6739i −0.695266 + 0.936652i
\(587\) 19.7791 0.816373 0.408186 0.912899i \(-0.366161\pi\)
0.408186 + 0.912899i \(0.366161\pi\)
\(588\) 0 0
\(589\) −17.1601 −0.707071
\(590\) 1.32690 1.78758i 0.0546276 0.0735935i
\(591\) 3.27894 10.3660i 0.134878 0.426399i
\(592\) −24.4490 + 16.2782i −1.00485 + 0.669029i
\(593\) 22.5237i 0.924939i −0.886635 0.462469i \(-0.846964\pi\)
0.886635 0.462469i \(-0.153036\pi\)
\(594\) 0.134576 + 10.2171i 0.00552171 + 0.419215i
\(595\) 0 0
\(596\) −4.39118 + 1.32811i −0.179870 + 0.0544013i
\(597\) −0.452122 + 1.42933i −0.0185041 + 0.0584984i
\(598\) 15.8170 + 11.7408i 0.646807 + 0.480117i
\(599\) −26.7316 −1.09223 −0.546113 0.837712i \(-0.683893\pi\)
−0.546113 + 0.837712i \(0.683893\pi\)
\(600\) −14.1067 + 18.5101i −0.575903 + 0.755671i
\(601\) −31.1478 −1.27055 −0.635273 0.772288i \(-0.719112\pi\)
−0.635273 + 0.772288i \(0.719112\pi\)
\(602\) 0 0
\(603\) 18.5362 26.3682i 0.754851 1.07380i
\(604\) −25.1466 + 7.60555i −1.02320 + 0.309465i
\(605\) 4.52840i 0.184106i
\(606\) −31.9534 + 23.0972i −1.29802 + 0.938258i
\(607\) 12.5787i 0.510552i 0.966868 + 0.255276i \(0.0821664\pi\)
−0.966868 + 0.255276i \(0.917834\pi\)
\(608\) −0.717627 + 14.0193i −0.0291036 + 0.568558i
\(609\) 0 0
\(610\) −2.06651 + 2.78398i −0.0836707 + 0.112720i
\(611\) 13.9288 0.563501
\(612\) 33.1768 + 10.9583i 1.34109 + 0.442962i
\(613\) 4.54262 0.183475 0.0917374 0.995783i \(-0.470758\pi\)
0.0917374 + 0.995783i \(0.470758\pi\)
\(614\) −11.9296 + 16.0714i −0.481440 + 0.648590i
\(615\) −4.73806 1.49873i −0.191057 0.0604348i
\(616\) 0 0
\(617\) 35.4652i 1.42777i −0.700261 0.713887i \(-0.746933\pi\)
0.700261 0.713887i \(-0.253067\pi\)
\(618\) −3.72543 + 2.69289i −0.149859 + 0.108324i
\(619\) 41.4572i 1.66631i −0.553042 0.833153i \(-0.686533\pi\)
0.553042 0.833153i \(-0.313467\pi\)
\(620\) 1.99977 + 6.61194i 0.0803128 + 0.265542i
\(621\) −15.9606 20.9204i −0.640476 0.839508i
\(622\) −27.8836 20.6976i −1.11803 0.829900i
\(623\) 0 0
\(624\) 18.3086 5.28542i 0.732931 0.211586i
\(625\) 21.3203 0.852810
\(626\) −0.0591199 0.0438840i −0.00236291 0.00175396i
\(627\) 1.80247 5.69827i 0.0719835 0.227567i
\(628\) −4.86911 16.0990i −0.194299 0.642419i
\(629\) 42.7609i 1.70499i
\(630\) 0 0
\(631\) 22.2919i 0.887428i −0.896168 0.443714i \(-0.853661\pi\)
0.896168 0.443714i \(-0.146339\pi\)
\(632\) 5.67332 + 2.03785i 0.225673 + 0.0810612i
\(633\) −2.03941 + 6.44735i −0.0810594 + 0.256259i
\(634\) 5.71202 7.69516i 0.226853 0.305614i
\(635\) 0.755312 0.0299736
\(636\) 18.1675 + 0.229970i 0.720386 + 0.00911891i
\(637\) 0 0
\(638\) −7.41070 + 9.98359i −0.293393 + 0.395254i
\(639\) −11.1479 7.83664i −0.441002 0.310013i
\(640\) 5.48538 1.35724i 0.216829 0.0536498i
\(641\) 34.1111i 1.34731i 0.739048 + 0.673653i \(0.235276\pi\)
−0.739048 + 0.673653i \(0.764724\pi\)
\(642\) 10.4443 + 14.4490i 0.412204 + 0.570258i
\(643\) 24.2299i 0.955533i 0.878487 + 0.477766i \(0.158553\pi\)
−0.878487 + 0.477766i \(0.841447\pi\)
\(644\) 0 0
\(645\) 2.90852 + 0.920019i 0.114523 + 0.0362257i
\(646\) −16.4096 12.1807i −0.645627 0.479241i
\(647\) −1.42818 −0.0561477 −0.0280738 0.999606i \(-0.508937\pi\)
−0.0280738 + 0.999606i \(0.508937\pi\)
\(648\) −25.4558 + 0.0130618i −1.00000 + 0.000513115i
\(649\) −4.38249 −0.172028
\(650\) −14.8378 11.0139i −0.581987 0.432002i
\(651\) 0 0
\(652\) −23.6612 + 7.15630i −0.926644 + 0.280262i
\(653\) 5.02787i 0.196756i 0.995149 + 0.0983778i \(0.0313654\pi\)
−0.995149 + 0.0983778i \(0.968635\pi\)
\(654\) −2.64320 3.65670i −0.103357 0.142988i
\(655\) 3.32162i 0.129787i
\(656\) −12.7342 19.1261i −0.497186 0.746748i
\(657\) 24.4814 + 17.2097i 0.955109 + 0.671416i
\(658\) 0 0
\(659\) −19.7930 −0.771025 −0.385512 0.922703i \(-0.625975\pi\)
−0.385512 + 0.922703i \(0.625975\pi\)
\(660\) −2.40564 0.0304515i −0.0936395 0.00118532i
\(661\) 22.6612 0.881419 0.440709 0.897650i \(-0.354727\pi\)
0.440709 + 0.897650i \(0.354727\pi\)
\(662\) 15.0814 20.3174i 0.586154 0.789658i
\(663\) −8.36686 + 26.4508i −0.324942 + 1.02726i
\(664\) 11.4897 31.9870i 0.445885 1.24134i
\(665\) 0 0
\(666\) 9.78613 + 29.5771i 0.379205 + 1.14609i
\(667\) 32.0187i 1.23977i
\(668\) 1.36961 + 4.52840i 0.0529918 + 0.175209i
\(669\) 12.2766 38.8108i 0.474639 1.50051i
\(670\) 6.09362 + 4.52322i 0.235417 + 0.174747i
\(671\) 6.82530 0.263488
\(672\) 0 0
\(673\) −11.2766 −0.434680 −0.217340 0.976096i \(-0.569738\pi\)
−0.217340 + 0.976096i \(0.569738\pi\)
\(674\) 8.05523 + 5.97930i 0.310276 + 0.230314i
\(675\) 14.9725 + 19.6252i 0.576291 + 0.755376i
\(676\) −3.14658 10.4037i −0.121022 0.400142i
\(677\) 10.0890i 0.387750i 0.981026 + 0.193875i \(0.0621056\pi\)
−0.981026 + 0.193875i \(0.937894\pi\)
\(678\) 20.3932 14.7410i 0.783197 0.566124i
\(679\) 0 0
\(680\) −2.78100 + 7.74223i −0.106646 + 0.296901i
\(681\) 31.6538 + 10.0127i 1.21298 + 0.383686i
\(682\) 8.10503 10.9190i 0.310357 0.418109i
\(683\) 6.23486 0.238570 0.119285 0.992860i \(-0.461940\pi\)
0.119285 + 0.992860i \(0.461940\pi\)
\(684\) 14.1379 + 4.66974i 0.540577 + 0.178552i
\(685\) 6.08933 0.232662
\(686\) 0 0
\(687\) −18.9517 5.99476i −0.723052 0.228714i
\(688\) 7.81705 + 11.7408i 0.298022 + 0.447614i
\(689\) 14.4263i 0.549599i
\(690\) 5.02112 3.62945i 0.191151 0.138171i
\(691\) 17.0676i 0.649283i −0.945837 0.324641i \(-0.894756\pi\)
0.945837 0.324641i \(-0.105244\pi\)
\(692\) −18.3200 + 5.54087i −0.696423 + 0.210632i
\(693\) 0 0
\(694\) 10.4367 + 7.74704i 0.396172 + 0.294074i
\(695\) −0.0238663 −0.000905300
\(696\) −24.6361 18.7754i −0.933829 0.711678i
\(697\) 33.4511 1.26705
\(698\) 25.1334 + 18.6562i 0.951313 + 0.706148i
\(699\) −10.5610 + 33.3872i −0.399452 + 1.26282i
\(700\) 0 0
\(701\) 21.4324i 0.809489i 0.914430 + 0.404744i \(0.132640\pi\)
−0.914430 + 0.404744i \(0.867360\pi\)
\(702\) −0.266204 20.2105i −0.0100472 0.762795i
\(703\) 18.2221i 0.687259i
\(704\) −8.58152 7.07818i −0.323428 0.266769i
\(705\) 1.32123 4.17692i 0.0497605 0.157312i
\(706\) −9.04155 + 12.1807i −0.340283 + 0.458425i
\(707\) 0 0
\(708\) 0.138192 10.9171i 0.00519359 0.410289i
\(709\) −8.54262 −0.320825 −0.160412 0.987050i \(-0.551282\pi\)
−0.160412 + 0.987050i \(0.551282\pi\)
\(710\) 1.91231 2.57623i 0.0717676 0.0966843i
\(711\) 3.67709 5.23076i 0.137902 0.196169i
\(712\) 6.52603 + 2.34414i 0.244573 + 0.0878503i
\(713\) 35.0186i 1.31146i
\(714\) 0 0
\(715\) 1.91026i 0.0714396i
\(716\) 12.0165 + 39.7309i 0.449079 + 1.48481i
\(717\) −11.4075 3.60838i −0.426019 0.134758i
\(718\) −4.09362 3.03864i −0.152772 0.113401i
\(719\) 27.4731 1.02457 0.512287 0.858814i \(-0.328798\pi\)
0.512287 + 0.858814i \(0.328798\pi\)
\(720\) 0.151713 5.99165i 0.00565402 0.223296i
\(721\) 0 0
\(722\) 14.5829 + 10.8247i 0.542719 + 0.402854i
\(723\) −13.3211 4.21369i −0.495416 0.156709i
\(724\) 3.72557 + 12.3180i 0.138460 + 0.457796i
\(725\) 30.0365i 1.11553i
\(726\) −13.0101 17.9986i −0.482848 0.667990i
\(727\) 45.7930i 1.69837i −0.528096 0.849185i \(-0.677094\pi\)
0.528096 0.849185i \(-0.322906\pi\)
\(728\) 0 0
\(729\) −7.13303 + 26.0407i −0.264186 + 0.964472i
\(730\) −4.19954 + 5.65756i −0.155432 + 0.209396i
\(731\) −20.5345 −0.759494
\(732\) −0.215221 + 17.0023i −0.00795479 + 0.628422i
\(733\) 43.2932 1.59907 0.799535 0.600620i \(-0.205080\pi\)
0.799535 + 0.600620i \(0.205080\pi\)
\(734\) −12.6661 + 17.0636i −0.467514 + 0.629828i
\(735\) 0 0
\(736\) 28.6091 + 1.46446i 1.05455 + 0.0539807i
\(737\) 14.9393i 0.550297i
\(738\) −23.1377 + 7.65553i −0.851711 + 0.281804i
\(739\) 5.17590i 0.190399i −0.995458 0.0951993i \(-0.969651\pi\)
0.995458 0.0951993i \(-0.0303488\pi\)
\(740\) −7.02111 + 2.12353i −0.258101 + 0.0780624i
\(741\) −3.56544 + 11.2717i −0.130980 + 0.414077i
\(742\) 0 0
\(743\) 49.5492 1.81778 0.908891 0.417034i \(-0.136930\pi\)
0.908891 + 0.417034i \(0.136930\pi\)
\(744\) 26.9443 + 20.5345i 0.987827 + 0.752830i
\(745\) −1.14568 −0.0419744
\(746\) 3.01709 + 2.23955i 0.110464 + 0.0819958i
\(747\) −29.4917 20.7319i −1.07905 0.758541i
\(748\) 15.5011 4.68828i 0.566775 0.171420i
\(749\) 0 0
\(750\) −9.66787 + 6.98830i −0.353021 + 0.255177i
\(751\) 30.5879i 1.11617i 0.829784 + 0.558084i \(0.188463\pi\)
−0.829784 + 0.558084i \(0.811537\pi\)
\(752\) 16.8609 11.2260i 0.614854 0.409371i
\(753\) −33.7006 10.6601i −1.22812 0.388476i
\(754\) 14.6591 19.7485i 0.533851 0.719197i
\(755\) −6.56086 −0.238774
\(756\) 0 0
\(757\) 46.4533 1.68837 0.844187 0.536049i \(-0.180084\pi\)
0.844187 + 0.536049i \(0.180084\pi\)
\(758\) −14.9322 + 20.1164i −0.542362 + 0.730662i
\(759\) −11.6284 3.67829i −0.422086 0.133513i
\(760\) −1.18509 + 3.29927i −0.0429878 + 0.119677i
\(761\) 39.4484i 1.43000i 0.699122 + 0.715002i \(0.253574\pi\)
−0.699122 + 0.715002i \(0.746426\pi\)
\(762\) 3.00206 2.17000i 0.108753 0.0786109i
\(763\) 0 0
\(764\) −10.1520 33.5659i −0.367285 1.21437i
\(765\) 7.13828 + 5.01802i 0.258085 + 0.181427i
\(766\) −37.3846 27.7502i −1.35076 1.00265i
\(767\) 8.66898 0.313019
\(768\) 17.9028 21.1539i 0.646012 0.763327i
\(769\) −39.7256 −1.43254 −0.716270 0.697823i \(-0.754152\pi\)
−0.716270 + 0.697823i \(0.754152\pi\)
\(770\) 0 0
\(771\) −14.2136 + 44.9346i −0.511891 + 1.61828i
\(772\) −1.26516 4.18305i −0.0455340 0.150551i
\(773\) 21.9318i 0.788833i −0.918932 0.394416i \(-0.870947\pi\)
0.918932 0.394416i \(-0.129053\pi\)
\(774\) 14.2034 4.69946i 0.510531 0.168919i
\(775\) 32.8506i 1.18003i
\(776\) 0.502967 1.40025i 0.0180554 0.0502660i
\(777\) 0 0
\(778\) 5.75054 7.74704i 0.206167 0.277745i
\(779\) 14.2548 0.510733
\(780\) 4.75858 + 0.0602359i 0.170385 + 0.00215679i
\(781\) −6.31598 −0.226004
\(782\) −24.8570 + 33.4870i −0.888885 + 1.19749i
\(783\) −26.1203 + 19.9277i −0.933464 + 0.712157i
\(784\) 0 0
\(785\) 4.20029i 0.149915i
\(786\) −9.54299 13.2021i −0.340387 0.470904i
\(787\) 5.04447i 0.179816i −0.995950 0.0899080i \(-0.971343\pi\)
0.995950 0.0899080i \(-0.0286573\pi\)
\(788\) 12.0165 3.63439i 0.428072 0.129470i
\(789\) −5.95319 1.88310i −0.211939 0.0670402i
\(790\) 1.20881 + 0.897287i 0.0430076 + 0.0319240i
\(791\) 0 0
\(792\) −9.64894 + 6.79035i −0.342860 + 0.241285i
\(793\) −13.5011 −0.479437
\(794\) 23.6698 + 17.5698i 0.840010 + 0.623529i
\(795\) 4.32609 + 1.36842i 0.153431 + 0.0485329i
\(796\) −1.65692 + 0.501133i −0.0587279 + 0.0177622i
\(797\) 28.3335i 1.00362i −0.864977 0.501812i \(-0.832667\pi\)
0.864977 0.501812i \(-0.167333\pi\)
\(798\) 0 0
\(799\) 29.4894i 1.04326i
\(800\) −26.8379 1.37379i −0.948865 0.0485710i
\(801\) 4.22976 6.01695i 0.149451 0.212599i
\(802\) 3.22450 4.34401i 0.113861 0.153392i
\(803\) 13.8703 0.489471
\(804\) 37.2148 + 0.471079i 1.31247 + 0.0166137i
\(805\) 0 0
\(806\) −16.0325 + 21.5987i −0.564721 + 0.760783i
\(807\) 13.6679 43.2095i 0.481134 1.52105i
\(808\) −42.8463 15.3903i −1.50733 0.541429i
\(809\) 20.2174i 0.710808i 0.934713 + 0.355404i \(0.115657\pi\)
−0.934713 + 0.355404i \(0.884343\pi\)
\(810\) −6.08587 1.83725i −0.213836 0.0645545i
\(811\) 1.33368i 0.0468317i −0.999726 0.0234158i \(-0.992546\pi\)
0.999726 0.0234158i \(-0.00745418\pi\)
\(812\) 0 0
\(813\) −12.0468 + 38.0845i −0.422500 + 1.33568i
\(814\) 11.5947 + 8.60660i 0.406394 + 0.301661i
\(815\) −6.17331 −0.216242
\(816\) 11.1900 + 38.7620i 0.391729 + 1.35694i
\(817\) −8.75054 −0.306142
\(818\) 4.39361 + 3.26133i 0.153619 + 0.114030i
\(819\) 0 0
\(820\) −1.66120 5.49251i −0.0580117 0.191807i
\(821\) 5.31136i 0.185368i 0.995696 + 0.0926838i \(0.0295446\pi\)
−0.995696 + 0.0926838i \(0.970455\pi\)
\(822\) 24.2026 17.4946i 0.844164 0.610194i
\(823\) 15.3007i 0.533349i −0.963787 0.266675i \(-0.914075\pi\)
0.963787 0.266675i \(-0.0859249\pi\)
\(824\) −4.99543 1.79435i −0.174024 0.0625091i
\(825\) 10.9085 + 3.45056i 0.379786 + 0.120133i
\(826\) 0 0
\(827\) −0.288306 −0.0100254 −0.00501270 0.999987i \(-0.501596\pi\)
−0.00501270 + 0.999987i \(0.501596\pi\)
\(828\) 9.52953 28.8512i 0.331174 1.00265i
\(829\) 41.1102 1.42782 0.713908 0.700239i \(-0.246923\pi\)
0.713908 + 0.700239i \(0.246923\pi\)
\(830\) 5.05903 6.81545i 0.175601 0.236568i
\(831\) −33.5086 10.5994i −1.16240 0.367689i
\(832\) 16.9750 + 14.0013i 0.588504 + 0.485408i
\(833\) 0 0
\(834\) −0.0948589 + 0.0685676i −0.00328469 + 0.00237430i
\(835\) 1.18148i 0.0408868i
\(836\) 6.60561 1.99786i 0.228460 0.0690974i
\(837\) 28.5676 21.7948i 0.987440 0.753337i
\(838\) −15.3452 11.3906i −0.530092 0.393481i
\(839\) 25.7705 0.889695 0.444848 0.895606i \(-0.353258\pi\)
0.444848 + 0.895606i \(0.353258\pi\)
\(840\) 0 0
\(841\) −10.9772 −0.378523
\(842\) 12.9255 + 9.59445i 0.445442 + 0.330647i
\(843\) −14.4507 + 45.6840i −0.497707 + 1.57344i
\(844\) −7.47397 + 2.26049i −0.257265 + 0.0778093i
\(845\) 2.71437i 0.0933771i
\(846\) −6.74886 20.3974i −0.232031 0.701279i
\(847\) 0 0
\(848\) 11.6270 + 17.4631i 0.399271 + 0.599685i
\(849\) −9.07391 + 28.6860i −0.311416 + 0.984502i
\(850\) 23.3181 31.4138i 0.799805 1.07749i
\(851\) −37.1857 −1.27471
\(852\) 0.199161 15.7335i 0.00682313 0.539022i
\(853\) 51.4656 1.76215 0.881074 0.472978i \(-0.156821\pi\)
0.881074 + 0.472978i \(0.156821\pi\)
\(854\) 0 0
\(855\) 3.04190 + 2.13838i 0.104031 + 0.0731309i
\(856\) −6.95935 + 19.3747i −0.237866 + 0.662213i
\(857\) 35.5762i 1.21526i −0.794220 0.607631i \(-0.792120\pi\)
0.794220 0.607631i \(-0.207880\pi\)
\(858\) −5.48816 7.59251i −0.187363 0.259204i
\(859\) 51.3072i 1.75058i 0.483598 + 0.875290i \(0.339330\pi\)
−0.483598 + 0.875290i \(0.660670\pi\)
\(860\) 1.01975 + 3.37165i 0.0347732 + 0.114972i
\(861\) 0 0
\(862\) −29.4388 21.8521i −1.00269 0.744286i
\(863\) 11.7830 0.401099 0.200550 0.979684i \(-0.435727\pi\)
0.200550 + 0.979684i \(0.435727\pi\)
\(864\) −16.6110 24.2503i −0.565116 0.825011i
\(865\) −4.77978 −0.162517
\(866\) −26.5522 19.7094i −0.902282 0.669753i
\(867\) −27.9263 8.83360i −0.948428 0.300005i
\(868\) 0 0
\(869\) 2.96357i 0.100532i
\(870\) −4.53158 6.26915i −0.153635 0.212544i
\(871\) 29.5514i 1.00131i
\(872\) 1.76124 4.90327i 0.0596433 0.166046i
\(873\) −1.29102 0.907552i −0.0436944 0.0307160i
\(874\) −10.5925 + 14.2701i −0.358298 + 0.482694i
\(875\) 0 0
\(876\) −0.437369 + 34.5518i −0.0147773 + 1.16740i
\(877\) 1.32863 0.0448646 0.0224323 0.999748i \(-0.492859\pi\)
0.0224323 + 0.999748i \(0.492859\pi\)
\(878\) 14.8969 20.0689i 0.502747 0.677294i
\(879\) −10.4302 + 32.9739i −0.351803 + 1.11218i
\(880\) −1.53958 2.31237i −0.0518993 0.0779501i
\(881\) 23.8258i 0.802713i 0.915922 + 0.401356i \(0.131461\pi\)
−0.915922 + 0.401356i \(0.868539\pi\)
\(882\) 0 0
\(883\) 30.2235i 1.01710i 0.861032 + 0.508551i \(0.169819\pi\)
−0.861032 + 0.508551i \(0.830181\pi\)
\(884\) −30.6626 + 9.27385i −1.03129 + 0.311913i
\(885\) 0.822304 2.59961i 0.0276414 0.0873850i
\(886\) 39.8993 + 29.6167i 1.34044 + 0.994994i
\(887\) −21.9111 −0.735704 −0.367852 0.929884i \(-0.619907\pi\)
−0.367852 + 0.929884i \(0.619907\pi\)
\(888\) −21.8052 + 28.6117i −0.731736 + 0.960147i
\(889\) 0 0
\(890\) 1.39050 + 1.03215i 0.0466096 + 0.0345978i
\(891\) 4.23658 + 11.7756i 0.141931 + 0.394496i
\(892\) 44.9907 13.6074i 1.50640 0.455609i
\(893\) 12.5666i 0.420525i
\(894\) −4.55361 + 3.29152i −0.152295 + 0.110085i
\(895\) 10.3660i 0.346496i
\(896\) 0 0
\(897\) 23.0021 + 7.27599i 0.768019 + 0.242938i
\(898\) 4.65906 6.27662i 0.155475 0.209453i
\(899\) 43.7227 1.45823
\(900\) −8.93956 + 27.0651i −0.297985 + 0.902169i
\(901\) −30.5426 −1.01752
\(902\) −6.73281 + 9.07034i −0.224178 + 0.302009i
\(903\) 0 0
\(904\) 27.3452 + 9.82235i 0.909489 + 0.326687i
\(905\) 3.21383i 0.106831i
\(906\) −26.0768 + 18.8493i −0.866342 + 0.626225i
\(907\) 48.9638i 1.62581i 0.582393 + 0.812907i \(0.302117\pi\)
−0.582393 + 0.812907i \(0.697883\pi\)
\(908\) 11.0981 + 36.6941i 0.368302 + 1.21774i
\(909\) −27.7702 + 39.5040i −0.921081 + 1.31026i
\(910\) 0 0
\(911\) −51.8251 −1.71704 −0.858522 0.512777i \(-0.828617\pi\)
−0.858522 + 0.512777i \(0.828617\pi\)
\(912\) 4.76850 + 16.5180i 0.157901 + 0.546966i
\(913\) −16.7090 −0.552987
\(914\) 27.1992 + 20.1896i 0.899669 + 0.667814i
\(915\) −1.28066 + 4.04864i −0.0423372 + 0.133844i
\(916\) −6.64461 21.9694i −0.219544 0.725889i
\(917\) 0 0
\(918\) 42.7885 0.563592i 1.41223 0.0186013i
\(919\) 50.5037i 1.66596i 0.553301 + 0.832981i \(0.313368\pi\)
−0.553301 + 0.832981i \(0.686632\pi\)
\(920\) 6.73281 + 2.41841i 0.221974 + 0.0797327i
\(921\) −7.39300 + 23.3721i −0.243608 + 0.770135i
\(922\) 2.52603 3.40303i 0.0831904 0.112073i
\(923\) 12.4936 0.411232
\(924\) 0 0
\(925\) 34.8836 1.14696
\(926\) −18.8940 + 25.4538i −0.620897 + 0.836463i
\(927\) −3.23772 + 4.60575i −0.106341 + 0.151273i
\(928\) 1.82846 35.7201i 0.0600221 1.17257i
\(929\) 1.23566i 0.0405407i 0.999795 + 0.0202703i \(0.00645269\pi\)
−0.999795 + 0.0202703i \(0.993547\pi\)
\(930\) 4.95615 + 6.85652i 0.162519 + 0.224834i
\(931\) 0 0
\(932\) −38.7034 + 11.7058i −1.26777 + 0.383436i
\(933\) −40.5500 12.8267i −1.32755 0.419927i
\(934\) 13.6963 + 10.1666i 0.448158 + 0.332662i
\(935\) 4.04430 0.132263
\(936\) 19.0865 13.4319i 0.623862 0.439037i
\(937\) 29.4139 0.960909 0.480455 0.877020i \(-0.340472\pi\)
0.480455 + 0.877020i \(0.340472\pi\)
\(938\) 0 0
\(939\) −0.0859759 0.0271957i −0.00280572 0.000887499i
\(940\) 4.84201 1.46446i 0.157929 0.0477654i
\(941\) 44.8636i 1.46251i 0.682103 + 0.731256i \(0.261066\pi\)
−0.682103 + 0.731256i \(0.738934\pi\)
\(942\) −12.0674 16.6945i −0.393177 0.543935i
\(943\) 29.0898i 0.947295i
\(944\) 10.4938 6.98680i 0.341545 0.227401i
\(945\) 0 0
\(946\) 4.13303 5.56796i 0.134376 0.181030i
\(947\) −17.5576 −0.570547 −0.285273 0.958446i \(-0.592084\pi\)
−0.285273 + 0.958446i \(0.592084\pi\)
\(948\) 7.38244 + 0.0934496i 0.239770 + 0.00303510i
\(949\) −27.4367 −0.890633
\(950\) 9.93676 13.3867i 0.322391 0.434321i
\(951\) 3.53984 11.1908i 0.114787 0.362886i
\(952\) 0 0
\(953\) 37.1546i 1.20356i 0.798663 + 0.601778i \(0.205541\pi\)
−0.798663 + 0.601778i \(0.794459\pi\)
\(954\) 21.1259 6.98990i 0.683977 0.226306i
\(955\) 8.75750i 0.283386i
\(956\) −3.99954 13.2239i −0.129354 0.427691i
\(957\) −4.59255 + 14.5188i −0.148456 + 0.469325i
\(958\) 15.2245 + 11.3010i 0.491881 + 0.365118i
\(959\) 0 0
\(960\) 5.80882 3.76229i 0.187479 0.121427i
\(961\) −16.8192 −0.542555
\(962\) −22.9354 17.0247i −0.739466 0.548897i
\(963\) 17.8633 + 12.5574i 0.575637 + 0.404658i
\(964\) −4.67047 15.4422i −0.150426 0.497360i
\(965\) 1.09138i 0.0351326i
\(966\) 0 0
\(967\) 53.9045i 1.73345i −0.498786 0.866725i \(-0.666221\pi\)
0.498786 0.866725i \(-0.333779\pi\)
\(968\) 8.66898 24.1343i 0.278632 0.775704i
\(969\) −23.8639 7.54857i −0.766618 0.242495i
\(970\) 0.221462 0.298350i 0.00711071 0.00957945i
\(971\) 38.3565 1.23092 0.615460 0.788168i \(-0.288970\pi\)
0.615460 + 0.788168i \(0.288970\pi\)
\(972\) −29.4673 + 10.1823i −0.945164 + 0.326597i
\(973\) 0 0
\(974\) 10.2906 13.8633i 0.329731 0.444208i
\(975\) −21.5781 6.82553i −0.691052 0.218592i
\(976\) −16.3431 + 10.8812i −0.523129 + 0.348300i
\(977\) 18.0025i 0.575952i −0.957638 0.287976i \(-0.907018\pi\)
0.957638 0.287976i \(-0.0929824\pi\)
\(978\) −24.5364 + 17.7359i −0.784589 + 0.567130i
\(979\) 3.40899i 0.108952i
\(980\) 0 0
\(981\) −4.52078 3.17799i −0.144337 0.101465i
\(982\) 45.3067 + 33.6306i 1.44580 + 1.07320i
\(983\) −13.7569 −0.438777 −0.219388 0.975638i \(-0.570406\pi\)
−0.219388 + 0.975638i \(0.570406\pi\)
\(984\) −22.3825 17.0579i −0.713529 0.543786i
\(985\) 3.13517 0.0998948
\(986\) 41.8104 + 31.0354i 1.33151 + 0.988368i
\(987\) 0 0
\(988\) −13.0665 + 3.95195i −0.415701 + 0.125728i
\(989\) 17.8572i 0.567826i
\(990\) −2.79739 + 0.925567i −0.0889069 + 0.0294164i
\(991\) 1.85652i 0.0589742i 0.999565 + 0.0294871i \(0.00938739\pi\)
−0.999565 + 0.0294871i \(0.990613\pi\)
\(992\) −1.99977 + 39.0668i −0.0634928 + 1.24037i
\(993\) 9.34619 29.5468i 0.296593 0.937640i
\(994\) 0 0
\(995\) −0.432298 −0.0137048
\(996\) 0.526882 41.6232i 0.0166949 1.31888i
\(997\) −60.3495 −1.91129 −0.955644 0.294524i \(-0.904839\pi\)
−0.955644 + 0.294524i \(0.904839\pi\)
\(998\) 7.14383 9.62407i 0.226134 0.304644i
\(999\) 23.1435 + 30.3355i 0.732228 + 0.959772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.d.491.10 12
3.2 odd 2 inner 588.2.e.d.491.3 12
4.3 odd 2 inner 588.2.e.d.491.4 12
7.2 even 3 588.2.n.e.263.7 24
7.3 odd 6 84.2.n.a.23.2 yes 24
7.4 even 3 588.2.n.e.275.2 24
7.5 odd 6 84.2.n.a.11.7 yes 24
7.6 odd 2 588.2.e.e.491.10 12
12.11 even 2 inner 588.2.e.d.491.9 12
21.2 odd 6 588.2.n.e.263.6 24
21.5 even 6 84.2.n.a.11.6 yes 24
21.11 odd 6 588.2.n.e.275.11 24
21.17 even 6 84.2.n.a.23.11 yes 24
21.20 even 2 588.2.e.e.491.3 12
28.3 even 6 84.2.n.a.23.6 yes 24
28.11 odd 6 588.2.n.e.275.6 24
28.19 even 6 84.2.n.a.11.11 yes 24
28.23 odd 6 588.2.n.e.263.11 24
28.27 even 2 588.2.e.e.491.4 12
84.11 even 6 588.2.n.e.275.7 24
84.23 even 6 588.2.n.e.263.2 24
84.47 odd 6 84.2.n.a.11.2 24
84.59 odd 6 84.2.n.a.23.7 yes 24
84.83 odd 2 588.2.e.e.491.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.n.a.11.2 24 84.47 odd 6
84.2.n.a.11.6 yes 24 21.5 even 6
84.2.n.a.11.7 yes 24 7.5 odd 6
84.2.n.a.11.11 yes 24 28.19 even 6
84.2.n.a.23.2 yes 24 7.3 odd 6
84.2.n.a.23.6 yes 24 28.3 even 6
84.2.n.a.23.7 yes 24 84.59 odd 6
84.2.n.a.23.11 yes 24 21.17 even 6
588.2.e.d.491.3 12 3.2 odd 2 inner
588.2.e.d.491.4 12 4.3 odd 2 inner
588.2.e.d.491.9 12 12.11 even 2 inner
588.2.e.d.491.10 12 1.1 even 1 trivial
588.2.e.e.491.3 12 21.20 even 2
588.2.e.e.491.4 12 28.27 even 2
588.2.e.e.491.9 12 84.83 odd 2
588.2.e.e.491.10 12 7.6 odd 2
588.2.n.e.263.2 24 84.23 even 6
588.2.n.e.263.6 24 21.2 odd 6
588.2.n.e.263.7 24 7.2 even 3
588.2.n.e.263.11 24 28.23 odd 6
588.2.n.e.275.2 24 7.4 even 3
588.2.n.e.275.6 24 28.11 odd 6
588.2.n.e.275.7 24 84.11 even 6
588.2.n.e.275.11 24 21.11 odd 6