Properties

Label 2-5766-1.1-c1-0-124
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 1.24·5-s + 6-s + 1.54·7-s − 8-s + 9-s − 1.24·10-s + 1.68·11-s − 12-s + 3.78·13-s − 1.54·14-s − 1.24·15-s + 16-s − 2.39·17-s − 18-s − 2.71·19-s + 1.24·20-s − 1.54·21-s − 1.68·22-s − 2.91·23-s + 24-s − 3.44·25-s − 3.78·26-s − 27-s + 1.54·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.558·5-s + 0.408·6-s + 0.583·7-s − 0.353·8-s + 0.333·9-s − 0.394·10-s + 0.508·11-s − 0.288·12-s + 1.05·13-s − 0.412·14-s − 0.322·15-s + 0.250·16-s − 0.581·17-s − 0.235·18-s − 0.623·19-s + 0.279·20-s − 0.337·21-s − 0.359·22-s − 0.608·23-s + 0.204·24-s − 0.688·25-s − 0.743·26-s − 0.192·27-s + 0.291·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
31 \( 1 \)
good5 \( 1 - 1.24T + 5T^{2} \)
7 \( 1 - 1.54T + 7T^{2} \)
11 \( 1 - 1.68T + 11T^{2} \)
13 \( 1 - 3.78T + 13T^{2} \)
17 \( 1 + 2.39T + 17T^{2} \)
19 \( 1 + 2.71T + 19T^{2} \)
23 \( 1 + 2.91T + 23T^{2} \)
29 \( 1 - 5.24T + 29T^{2} \)
37 \( 1 + 6.63T + 37T^{2} \)
41 \( 1 + 2.10T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 - 5.09T + 47T^{2} \)
53 \( 1 + 8.16T + 53T^{2} \)
59 \( 1 + 3.76T + 59T^{2} \)
61 \( 1 + 15.3T + 61T^{2} \)
67 \( 1 - 0.962T + 67T^{2} \)
71 \( 1 + 2.03T + 71T^{2} \)
73 \( 1 + 0.762T + 73T^{2} \)
79 \( 1 + 9.20T + 79T^{2} \)
83 \( 1 + 8.52T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 - 3.30T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88828323800221221607382646443, −6.95777284111678907691337954320, −6.30726486746094182587004250165, −5.90820482211981000109907659121, −4.90702808138139022884198694251, −4.16458092660312299176340983926, −3.15110598303531371677425996214, −1.86483660906014034550341192858, −1.43781364320982337439866542595, 0, 1.43781364320982337439866542595, 1.86483660906014034550341192858, 3.15110598303531371677425996214, 4.16458092660312299176340983926, 4.90702808138139022884198694251, 5.90820482211981000109907659121, 6.30726486746094182587004250165, 6.95777284111678907691337954320, 7.88828323800221221607382646443

Graph of the $Z$-function along the critical line