Properties

Label 2-572e2-1.1-c1-0-129
Degree $2$
Conductor $327184$
Sign $1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 2·7-s + 9-s − 2·15-s + 3·17-s − 6·19-s − 4·21-s + 4·23-s − 4·25-s − 4·27-s − 29-s − 4·31-s + 2·35-s − 9·37-s − 41-s − 4·43-s − 45-s + 6·47-s − 3·49-s + 6·51-s − 9·53-s − 12·57-s + 6·59-s − 5·61-s − 2·63-s − 6·67-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.516·15-s + 0.727·17-s − 1.37·19-s − 0.872·21-s + 0.834·23-s − 4/5·25-s − 0.769·27-s − 0.185·29-s − 0.718·31-s + 0.338·35-s − 1.47·37-s − 0.156·41-s − 0.609·43-s − 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.840·51-s − 1.23·53-s − 1.58·57-s + 0.781·59-s − 0.640·61-s − 0.251·63-s − 0.733·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95802206387801, −12.73524292217642, −12.33346347133028, −11.66187595207706, −11.30218552940822, −10.72398929553510, −10.21623067314784, −9.856576056358523, −9.256862598057485, −8.960582647131557, −8.433707047549628, −8.165314308925784, −7.529630962036656, −7.145416547704956, −6.720848455171089, −5.992561278276126, −5.687341236814878, −4.970959772206168, −4.347843614812879, −3.840227531681578, −3.373161088009611, −3.066492319152254, −2.431902061359897, −1.834872869800868, −1.292402248720998, 0, 0, 1.292402248720998, 1.834872869800868, 2.431902061359897, 3.066492319152254, 3.373161088009611, 3.840227531681578, 4.347843614812879, 4.970959772206168, 5.687341236814878, 5.992561278276126, 6.720848455171089, 7.145416547704956, 7.529630962036656, 8.165314308925784, 8.433707047549628, 8.960582647131557, 9.256862598057485, 9.856576056358523, 10.21623067314784, 10.72398929553510, 11.30218552940822, 11.66187595207706, 12.33346347133028, 12.73524292217642, 12.95802206387801

Graph of the $Z$-function along the critical line