Properties

Label 2-572e2-1.1-c1-0-105
Degree $2$
Conductor $327184$
Sign $-1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s − 2·9-s + 15-s + 17-s + 4·19-s − 21-s + 8·23-s − 4·25-s − 5·27-s + 8·29-s − 35-s − 7·37-s − 8·41-s + 11·43-s − 2·45-s − 47-s − 6·49-s + 51-s + 2·53-s + 4·57-s + 14·59-s + 8·61-s + 2·63-s + 8·67-s + 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s − 2/3·9-s + 0.258·15-s + 0.242·17-s + 0.917·19-s − 0.218·21-s + 1.66·23-s − 4/5·25-s − 0.962·27-s + 1.48·29-s − 0.169·35-s − 1.15·37-s − 1.24·41-s + 1.67·43-s − 0.298·45-s − 0.145·47-s − 6/7·49-s + 0.140·51-s + 0.274·53-s + 0.529·57-s + 1.82·59-s + 1.02·61-s + 0.251·63-s + 0.977·67-s + 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05694585951625, −12.33739123788061, −11.93365222751468, −11.53682930084855, −10.99822776910307, −10.52192417047106, −10.00742081040963, −9.552052521503987, −9.262089402303831, −8.691134731286182, −8.295505985208081, −7.900149199049353, −7.235270620473451, −6.730217601142273, −6.488565818056741, −5.647380833312609, −5.284169040170967, −5.049691075300398, −4.098851092560422, −3.625102544865610, −3.150817422539720, −2.615297386325231, −2.274603976617495, −1.370265057699800, −0.8897830921769184, 0, 0.8897830921769184, 1.370265057699800, 2.274603976617495, 2.615297386325231, 3.150817422539720, 3.625102544865610, 4.098851092560422, 5.049691075300398, 5.284169040170967, 5.647380833312609, 6.488565818056741, 6.730217601142273, 7.235270620473451, 7.900149199049353, 8.295505985208081, 8.691134731286182, 9.262089402303831, 9.552052521503987, 10.00742081040963, 10.52192417047106, 10.99822776910307, 11.53682930084855, 11.93365222751468, 12.33739123788061, 13.05694585951625

Graph of the $Z$-function along the critical line