| L(s) = 1 | + (2.85 + 2.85i)3-s + (2.38 + 4.39i)5-s + (−5.83 + 3.87i)7-s + 7.33i·9-s − 11.7i·11-s + (−14.4 + 14.4i)13-s + (−5.74 + 19.3i)15-s + (−5.99 − 5.99i)17-s + 36.6i·19-s + (−27.7 − 5.60i)21-s + (23.3 − 23.3i)23-s + (−13.6 + 20.9i)25-s + (4.76 − 4.76i)27-s + 20.4i·29-s − 26.3·31-s + ⋯ |
| L(s) = 1 | + (0.952 + 0.952i)3-s + (0.476 + 0.878i)5-s + (−0.833 + 0.552i)7-s + 0.814i·9-s − 1.06i·11-s + (−1.11 + 1.11i)13-s + (−0.382 + 1.29i)15-s + (−0.352 − 0.352i)17-s + 1.93i·19-s + (−1.32 − 0.267i)21-s + (1.01 − 1.01i)23-s + (−0.545 + 0.838i)25-s + (0.176 − 0.176i)27-s + 0.706i·29-s − 0.849·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.868 - 0.494i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.868 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.907392874\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.907392874\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.38 - 4.39i)T \) |
| 7 | \( 1 + (5.83 - 3.87i)T \) |
| good | 3 | \( 1 + (-2.85 - 2.85i)T + 9iT^{2} \) |
| 11 | \( 1 + 11.7iT - 121T^{2} \) |
| 13 | \( 1 + (14.4 - 14.4i)T - 169iT^{2} \) |
| 17 | \( 1 + (5.99 + 5.99i)T + 289iT^{2} \) |
| 19 | \( 1 - 36.6iT - 361T^{2} \) |
| 23 | \( 1 + (-23.3 + 23.3i)T - 529iT^{2} \) |
| 29 | \( 1 - 20.4iT - 841T^{2} \) |
| 31 | \( 1 + 26.3T + 961T^{2} \) |
| 37 | \( 1 + (23.8 - 23.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 4.49iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (-16.6 + 16.6i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-36.6 + 36.6i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-61.3 - 61.3i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 43.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 87.5iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (-18.1 - 18.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 2.44iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-48.9 + 48.9i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 60.5T + 6.24e3T^{2} \) |
| 83 | \( 1 + (26.3 + 26.3i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 150.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (4.43 + 4.43i)T + 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50618528953020354165924905502, −10.06076122573375431744171182158, −9.098859309928966406520949375827, −8.739762017359653093920661693672, −7.29348874999538902027102485974, −6.40206978827745487256513850542, −5.38078941503512135415722952940, −3.95620877295527026997934401534, −3.12846938021909101104398289940, −2.29075430304975000215103271783,
0.61199732953877119288620849561, 2.06002852907268039322365213287, 2.98523083363429444371114151617, 4.50368761401052904246821898652, 5.52514203604626806775933761754, 7.08019740372240017564831815577, 7.25548650515144388078325383540, 8.421462429222953551949109614533, 9.347784214567356138193432863819, 9.806163607230096701988858687913