Properties

Label 560.3.v.b.223.30
Level $560$
Weight $3$
Character 560.223
Analytic conductor $15.259$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 223.30
Character \(\chi\) \(=\) 560.223
Dual form 560.3.v.b.447.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.85761 + 2.85761i) q^{3} +(2.38475 + 4.39465i) q^{5} +(-5.83264 + 3.87043i) q^{7} +7.33188i q^{9} -11.7125i q^{11} +(-14.4927 + 14.4927i) q^{13} +(-5.74353 + 19.3729i) q^{15} +(-5.99637 - 5.99637i) q^{17} +36.6798i q^{19} +(-27.7276 - 5.60723i) q^{21} +(23.3020 - 23.3020i) q^{23} +(-13.6260 + 20.9603i) q^{25} +(4.76683 - 4.76683i) q^{27} +20.4842i q^{29} -26.3284 q^{31} +(33.4698 - 33.4698i) q^{33} +(-30.9186 - 16.4024i) q^{35} +(-23.8254 + 23.8254i) q^{37} -82.8292 q^{39} -4.49681i q^{41} +(16.6452 - 16.6452i) q^{43} +(-32.2211 + 17.4847i) q^{45} +(36.6777 - 36.6777i) q^{47} +(19.0395 - 45.1497i) q^{49} -34.2706i q^{51} +(61.3395 + 61.3395i) q^{53} +(51.4724 - 27.9314i) q^{55} +(-104.817 + 104.817i) q^{57} -43.1156i q^{59} +87.5037i q^{61} +(-28.3776 - 42.7643i) q^{63} +(-98.2520 - 29.1290i) q^{65} +(18.1881 + 18.1881i) q^{67} +133.176 q^{69} -2.44203i q^{71} +(48.9892 - 48.9892i) q^{73} +(-98.8340 + 20.9586i) q^{75} +(45.3325 + 68.3149i) q^{77} -60.5548 q^{79} +93.2304 q^{81} +(-26.3121 - 26.3121i) q^{83} +(12.0521 - 40.6518i) q^{85} +(-58.5359 + 58.5359i) q^{87} -150.664 q^{89} +(28.4378 - 140.624i) q^{91} +(-75.2364 - 75.2364i) q^{93} +(-161.195 + 87.4720i) q^{95} +(-4.43919 - 4.43919i) q^{97} +85.8747 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{21} - 72 q^{25} + 72 q^{37} + 272 q^{53} - 376 q^{57} - 88 q^{65} + 24 q^{77} - 432 q^{81} + 384 q^{85} + 840 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.85761 + 2.85761i 0.952537 + 0.952537i 0.998924 0.0463866i \(-0.0147706\pi\)
−0.0463866 + 0.998924i \(0.514771\pi\)
\(4\) 0 0
\(5\) 2.38475 + 4.39465i 0.476949 + 0.878931i
\(6\) 0 0
\(7\) −5.83264 + 3.87043i −0.833235 + 0.552919i
\(8\) 0 0
\(9\) 7.33188i 0.814654i
\(10\) 0 0
\(11\) 11.7125i 1.06477i −0.846501 0.532387i \(-0.821295\pi\)
0.846501 0.532387i \(-0.178705\pi\)
\(12\) 0 0
\(13\) −14.4927 + 14.4927i −1.11483 + 1.11483i −0.122337 + 0.992489i \(0.539039\pi\)
−0.992489 + 0.122337i \(0.960961\pi\)
\(14\) 0 0
\(15\) −5.74353 + 19.3729i −0.382902 + 1.29153i
\(16\) 0 0
\(17\) −5.99637 5.99637i −0.352728 0.352728i 0.508396 0.861124i \(-0.330239\pi\)
−0.861124 + 0.508396i \(0.830239\pi\)
\(18\) 0 0
\(19\) 36.6798i 1.93051i 0.261302 + 0.965257i \(0.415848\pi\)
−0.261302 + 0.965257i \(0.584152\pi\)
\(20\) 0 0
\(21\) −27.7276 5.60723i −1.32036 0.267011i
\(22\) 0 0
\(23\) 23.3020 23.3020i 1.01313 1.01313i 0.0132199 0.999913i \(-0.495792\pi\)
0.999913 0.0132199i \(-0.00420816\pi\)
\(24\) 0 0
\(25\) −13.6260 + 20.9603i −0.545038 + 0.838411i
\(26\) 0 0
\(27\) 4.76683 4.76683i 0.176549 0.176549i
\(28\) 0 0
\(29\) 20.4842i 0.706352i 0.935557 + 0.353176i \(0.114898\pi\)
−0.935557 + 0.353176i \(0.885102\pi\)
\(30\) 0 0
\(31\) −26.3284 −0.849304 −0.424652 0.905357i \(-0.639604\pi\)
−0.424652 + 0.905357i \(0.639604\pi\)
\(32\) 0 0
\(33\) 33.4698 33.4698i 1.01424 1.01424i
\(34\) 0 0
\(35\) −30.9186 16.4024i −0.883389 0.468641i
\(36\) 0 0
\(37\) −23.8254 + 23.8254i −0.643931 + 0.643931i −0.951519 0.307589i \(-0.900478\pi\)
0.307589 + 0.951519i \(0.400478\pi\)
\(38\) 0 0
\(39\) −82.8292 −2.12382
\(40\) 0 0
\(41\) 4.49681i 0.109678i −0.998495 0.0548392i \(-0.982535\pi\)
0.998495 0.0548392i \(-0.0174646\pi\)
\(42\) 0 0
\(43\) 16.6452 16.6452i 0.387097 0.387097i −0.486553 0.873651i \(-0.661746\pi\)
0.873651 + 0.486553i \(0.161746\pi\)
\(44\) 0 0
\(45\) −32.2211 + 17.4847i −0.716024 + 0.388549i
\(46\) 0 0
\(47\) 36.6777 36.6777i 0.780378 0.780378i −0.199517 0.979894i \(-0.563937\pi\)
0.979894 + 0.199517i \(0.0639373\pi\)
\(48\) 0 0
\(49\) 19.0395 45.1497i 0.388561 0.921423i
\(50\) 0 0
\(51\) 34.2706i 0.671973i
\(52\) 0 0
\(53\) 61.3395 + 61.3395i 1.15735 + 1.15735i 0.985043 + 0.172306i \(0.0551218\pi\)
0.172306 + 0.985043i \(0.444878\pi\)
\(54\) 0 0
\(55\) 51.4724 27.9314i 0.935862 0.507843i
\(56\) 0 0
\(57\) −104.817 + 104.817i −1.83889 + 1.83889i
\(58\) 0 0
\(59\) 43.1156i 0.730773i −0.930856 0.365387i \(-0.880937\pi\)
0.930856 0.365387i \(-0.119063\pi\)
\(60\) 0 0
\(61\) 87.5037i 1.43449i 0.696823 + 0.717243i \(0.254596\pi\)
−0.696823 + 0.717243i \(0.745404\pi\)
\(62\) 0 0
\(63\) −28.3776 42.7643i −0.450438 0.678798i
\(64\) 0 0
\(65\) −98.2520 29.1290i −1.51157 0.448139i
\(66\) 0 0
\(67\) 18.1881 + 18.1881i 0.271465 + 0.271465i 0.829690 0.558225i \(-0.188517\pi\)
−0.558225 + 0.829690i \(0.688517\pi\)
\(68\) 0 0
\(69\) 133.176 1.93009
\(70\) 0 0
\(71\) 2.44203i 0.0343949i −0.999852 0.0171974i \(-0.994526\pi\)
0.999852 0.0171974i \(-0.00547438\pi\)
\(72\) 0 0
\(73\) 48.9892 48.9892i 0.671085 0.671085i −0.286881 0.957966i \(-0.592619\pi\)
0.957966 + 0.286881i \(0.0926185\pi\)
\(74\) 0 0
\(75\) −98.8340 + 20.9586i −1.31779 + 0.279448i
\(76\) 0 0
\(77\) 45.3325 + 68.3149i 0.588733 + 0.887206i
\(78\) 0 0
\(79\) −60.5548 −0.766516 −0.383258 0.923641i \(-0.625198\pi\)
−0.383258 + 0.923641i \(0.625198\pi\)
\(80\) 0 0
\(81\) 93.2304 1.15099
\(82\) 0 0
\(83\) −26.3121 26.3121i −0.317013 0.317013i 0.530606 0.847619i \(-0.321964\pi\)
−0.847619 + 0.530606i \(0.821964\pi\)
\(84\) 0 0
\(85\) 12.0521 40.6518i 0.141790 0.478257i
\(86\) 0 0
\(87\) −58.5359 + 58.5359i −0.672827 + 0.672827i
\(88\) 0 0
\(89\) −150.664 −1.69285 −0.846424 0.532509i \(-0.821249\pi\)
−0.846424 + 0.532509i \(0.821249\pi\)
\(90\) 0 0
\(91\) 28.4378 140.624i 0.312503 1.54532i
\(92\) 0 0
\(93\) −75.2364 75.2364i −0.808993 0.808993i
\(94\) 0 0
\(95\) −161.195 + 87.4720i −1.69679 + 0.920758i
\(96\) 0 0
\(97\) −4.43919 4.43919i −0.0457648 0.0457648i 0.683854 0.729619i \(-0.260303\pi\)
−0.729619 + 0.683854i \(0.760303\pi\)
\(98\) 0 0
\(99\) 85.8747 0.867421
\(100\) 0 0
\(101\) 93.1407i 0.922186i 0.887352 + 0.461093i \(0.152542\pi\)
−0.887352 + 0.461093i \(0.847458\pi\)
\(102\) 0 0
\(103\) 93.5378 + 93.5378i 0.908134 + 0.908134i 0.996122 0.0879879i \(-0.0280437\pi\)
−0.0879879 + 0.996122i \(0.528044\pi\)
\(104\) 0 0
\(105\) −41.4815 135.225i −0.395062 1.28786i
\(106\) 0 0
\(107\) 62.3576 + 62.3576i 0.582781 + 0.582781i 0.935667 0.352885i \(-0.114799\pi\)
−0.352885 + 0.935667i \(0.614799\pi\)
\(108\) 0 0
\(109\) 126.472i 1.16029i 0.814512 + 0.580147i \(0.197005\pi\)
−0.814512 + 0.580147i \(0.802995\pi\)
\(110\) 0 0
\(111\) −136.168 −1.22674
\(112\) 0 0
\(113\) 120.350 + 120.350i 1.06504 + 1.06504i 0.997732 + 0.0673089i \(0.0214413\pi\)
0.0673089 + 0.997732i \(0.478559\pi\)
\(114\) 0 0
\(115\) 157.974 + 46.8349i 1.37369 + 0.407260i
\(116\) 0 0
\(117\) −106.259 106.259i −0.908196 0.908196i
\(118\) 0 0
\(119\) 58.1833 + 11.7661i 0.488935 + 0.0988751i
\(120\) 0 0
\(121\) −16.1827 −0.133742
\(122\) 0 0
\(123\) 12.8501 12.8501i 0.104473 0.104473i
\(124\) 0 0
\(125\) −124.608 9.89640i −0.996861 0.0791712i
\(126\) 0 0
\(127\) 111.195 + 111.195i 0.875554 + 0.875554i 0.993071 0.117516i \(-0.0374933\pi\)
−0.117516 + 0.993071i \(0.537493\pi\)
\(128\) 0 0
\(129\) 95.1310 0.737449
\(130\) 0 0
\(131\) −29.2689 −0.223426 −0.111713 0.993740i \(-0.535634\pi\)
−0.111713 + 0.993740i \(0.535634\pi\)
\(132\) 0 0
\(133\) −141.967 213.940i −1.06742 1.60857i
\(134\) 0 0
\(135\) 32.3163 + 9.58089i 0.239380 + 0.0709695i
\(136\) 0 0
\(137\) 62.2531 62.2531i 0.454402 0.454402i −0.442410 0.896813i \(-0.645876\pi\)
0.896813 + 0.442410i \(0.145876\pi\)
\(138\) 0 0
\(139\) 28.7928i 0.207143i 0.994622 + 0.103571i \(0.0330270\pi\)
−0.994622 + 0.103571i \(0.966973\pi\)
\(140\) 0 0
\(141\) 209.621 1.48668
\(142\) 0 0
\(143\) 169.746 + 169.746i 1.18704 + 1.18704i
\(144\) 0 0
\(145\) −90.0211 + 48.8497i −0.620835 + 0.336894i
\(146\) 0 0
\(147\) 183.428 74.6130i 1.24781 0.507571i
\(148\) 0 0
\(149\) 188.205i 1.26312i −0.775328 0.631559i \(-0.782415\pi\)
0.775328 0.631559i \(-0.217585\pi\)
\(150\) 0 0
\(151\) 55.8374i 0.369784i 0.982759 + 0.184892i \(0.0591936\pi\)
−0.982759 + 0.184892i \(0.940806\pi\)
\(152\) 0 0
\(153\) 43.9647 43.9647i 0.287351 0.287351i
\(154\) 0 0
\(155\) −62.7866 115.704i −0.405075 0.746479i
\(156\) 0 0
\(157\) −80.6749 80.6749i −0.513853 0.513853i 0.401852 0.915705i \(-0.368367\pi\)
−0.915705 + 0.401852i \(0.868367\pi\)
\(158\) 0 0
\(159\) 350.569i 2.20484i
\(160\) 0 0
\(161\) −45.7235 + 226.102i −0.283997 + 1.40436i
\(162\) 0 0
\(163\) 191.804 191.804i 1.17671 1.17671i 0.196132 0.980578i \(-0.437162\pi\)
0.980578 0.196132i \(-0.0628380\pi\)
\(164\) 0 0
\(165\) 226.905 + 67.2711i 1.37518 + 0.407704i
\(166\) 0 0
\(167\) 157.215 157.215i 0.941408 0.941408i −0.0569677 0.998376i \(-0.518143\pi\)
0.998376 + 0.0569677i \(0.0181432\pi\)
\(168\) 0 0
\(169\) 251.078i 1.48567i
\(170\) 0 0
\(171\) −268.932 −1.57270
\(172\) 0 0
\(173\) 73.1229 73.1229i 0.422676 0.422676i −0.463448 0.886124i \(-0.653388\pi\)
0.886124 + 0.463448i \(0.153388\pi\)
\(174\) 0 0
\(175\) −1.65002 174.992i −0.00942867 0.999956i
\(176\) 0 0
\(177\) 123.208 123.208i 0.696088 0.696088i
\(178\) 0 0
\(179\) −10.2298 −0.0571499 −0.0285749 0.999592i \(-0.509097\pi\)
−0.0285749 + 0.999592i \(0.509097\pi\)
\(180\) 0 0
\(181\) 38.8562i 0.214675i −0.994223 0.107338i \(-0.965767\pi\)
0.994223 0.107338i \(-0.0342326\pi\)
\(182\) 0 0
\(183\) −250.051 + 250.051i −1.36640 + 1.36640i
\(184\) 0 0
\(185\) −161.522 47.8869i −0.873093 0.258848i
\(186\) 0 0
\(187\) −70.2325 + 70.2325i −0.375575 + 0.375575i
\(188\) 0 0
\(189\) −9.35353 + 46.2530i −0.0494896 + 0.244725i
\(190\) 0 0
\(191\) 175.620i 0.919478i 0.888054 + 0.459739i \(0.152057\pi\)
−0.888054 + 0.459739i \(0.847943\pi\)
\(192\) 0 0
\(193\) −0.630383 0.630383i −0.00326623 0.00326623i 0.705472 0.708738i \(-0.250735\pi\)
−0.708738 + 0.705472i \(0.750735\pi\)
\(194\) 0 0
\(195\) −197.527 364.006i −1.01296 1.86669i
\(196\) 0 0
\(197\) 68.0549 68.0549i 0.345456 0.345456i −0.512958 0.858414i \(-0.671450\pi\)
0.858414 + 0.512958i \(0.171450\pi\)
\(198\) 0 0
\(199\) 212.860i 1.06965i −0.844964 0.534824i \(-0.820378\pi\)
0.844964 0.534824i \(-0.179622\pi\)
\(200\) 0 0
\(201\) 103.949i 0.517160i
\(202\) 0 0
\(203\) −79.2828 119.477i −0.390556 0.588557i
\(204\) 0 0
\(205\) 19.7619 10.7238i 0.0963996 0.0523110i
\(206\) 0 0
\(207\) 170.848 + 170.848i 0.825352 + 0.825352i
\(208\) 0 0
\(209\) 429.612 2.05556
\(210\) 0 0
\(211\) 33.9546i 0.160922i 0.996758 + 0.0804611i \(0.0256393\pi\)
−0.996758 + 0.0804611i \(0.974361\pi\)
\(212\) 0 0
\(213\) 6.97838 6.97838i 0.0327624 0.0327624i
\(214\) 0 0
\(215\) 112.844 + 33.4553i 0.524858 + 0.155606i
\(216\) 0 0
\(217\) 153.564 101.902i 0.707670 0.469597i
\(218\) 0 0
\(219\) 279.984 1.27847
\(220\) 0 0
\(221\) 173.808 0.786460
\(222\) 0 0
\(223\) −103.146 103.146i −0.462539 0.462539i 0.436948 0.899487i \(-0.356059\pi\)
−0.899487 + 0.436948i \(0.856059\pi\)
\(224\) 0 0
\(225\) −153.678 99.9039i −0.683015 0.444017i
\(226\) 0 0
\(227\) −40.4365 + 40.4365i −0.178134 + 0.178134i −0.790542 0.612408i \(-0.790201\pi\)
0.612408 + 0.790542i \(0.290201\pi\)
\(228\) 0 0
\(229\) 240.198 1.04890 0.524450 0.851441i \(-0.324271\pi\)
0.524450 + 0.851441i \(0.324271\pi\)
\(230\) 0 0
\(231\) −65.6747 + 324.760i −0.284306 + 1.40589i
\(232\) 0 0
\(233\) 193.833 + 193.833i 0.831901 + 0.831901i 0.987777 0.155876i \(-0.0498200\pi\)
−0.155876 + 0.987777i \(0.549820\pi\)
\(234\) 0 0
\(235\) 248.653 + 73.7188i 1.05810 + 0.313697i
\(236\) 0 0
\(237\) −173.042 173.042i −0.730135 0.730135i
\(238\) 0 0
\(239\) −34.1812 −0.143018 −0.0715088 0.997440i \(-0.522781\pi\)
−0.0715088 + 0.997440i \(0.522781\pi\)
\(240\) 0 0
\(241\) 259.267i 1.07580i 0.843010 + 0.537898i \(0.180781\pi\)
−0.843010 + 0.537898i \(0.819219\pi\)
\(242\) 0 0
\(243\) 223.515 + 223.515i 0.919814 + 0.919814i
\(244\) 0 0
\(245\) 243.822 23.9988i 0.995191 0.0979545i
\(246\) 0 0
\(247\) −531.590 531.590i −2.15219 2.15219i
\(248\) 0 0
\(249\) 150.379i 0.603933i
\(250\) 0 0
\(251\) 274.718 1.09450 0.547248 0.836971i \(-0.315676\pi\)
0.547248 + 0.836971i \(0.315676\pi\)
\(252\) 0 0
\(253\) −272.925 272.925i −1.07876 1.07876i
\(254\) 0 0
\(255\) 150.607 81.7267i 0.590617 0.320497i
\(256\) 0 0
\(257\) −120.905 120.905i −0.470449 0.470449i 0.431611 0.902060i \(-0.357945\pi\)
−0.902060 + 0.431611i \(0.857945\pi\)
\(258\) 0 0
\(259\) 46.7505 231.180i 0.180504 0.892587i
\(260\) 0 0
\(261\) −150.188 −0.575433
\(262\) 0 0
\(263\) 12.3440 12.3440i 0.0469355 0.0469355i −0.683250 0.730185i \(-0.739434\pi\)
0.730185 + 0.683250i \(0.239434\pi\)
\(264\) 0 0
\(265\) −123.287 + 415.845i −0.465233 + 1.56923i
\(266\) 0 0
\(267\) −430.538 430.538i −1.61250 1.61250i
\(268\) 0 0
\(269\) −229.919 −0.854718 −0.427359 0.904082i \(-0.640556\pi\)
−0.427359 + 0.904082i \(0.640556\pi\)
\(270\) 0 0
\(271\) −89.5182 −0.330325 −0.165163 0.986266i \(-0.552815\pi\)
−0.165163 + 0.986266i \(0.552815\pi\)
\(272\) 0 0
\(273\) 483.113 320.585i 1.76964 1.17430i
\(274\) 0 0
\(275\) 245.497 + 159.594i 0.892718 + 0.580342i
\(276\) 0 0
\(277\) −84.1873 + 84.1873i −0.303925 + 0.303925i −0.842547 0.538622i \(-0.818945\pi\)
0.538622 + 0.842547i \(0.318945\pi\)
\(278\) 0 0
\(279\) 193.037i 0.691888i
\(280\) 0 0
\(281\) 157.171 0.559328 0.279664 0.960098i \(-0.409777\pi\)
0.279664 + 0.960098i \(0.409777\pi\)
\(282\) 0 0
\(283\) −8.32484 8.32484i −0.0294164 0.0294164i 0.692246 0.721662i \(-0.256621\pi\)
−0.721662 + 0.692246i \(0.756621\pi\)
\(284\) 0 0
\(285\) −710.593 210.671i −2.49331 0.739198i
\(286\) 0 0
\(287\) 17.4046 + 26.2283i 0.0606432 + 0.0913878i
\(288\) 0 0
\(289\) 217.087i 0.751166i
\(290\) 0 0
\(291\) 25.3710i 0.0871854i
\(292\) 0 0
\(293\) 282.847 282.847i 0.965347 0.965347i −0.0340727 0.999419i \(-0.510848\pi\)
0.999419 + 0.0340727i \(0.0108478\pi\)
\(294\) 0 0
\(295\) 189.478 102.820i 0.642299 0.348542i
\(296\) 0 0
\(297\) −55.8316 55.8316i −0.187985 0.187985i
\(298\) 0 0
\(299\) 675.421i 2.25893i
\(300\) 0 0
\(301\) −32.6613 + 161.510i −0.108509 + 0.536577i
\(302\) 0 0
\(303\) −266.160 + 266.160i −0.878416 + 0.878416i
\(304\) 0 0
\(305\) −384.548 + 208.674i −1.26081 + 0.684178i
\(306\) 0 0
\(307\) 255.354 255.354i 0.831773 0.831773i −0.155986 0.987759i \(-0.549855\pi\)
0.987759 + 0.155986i \(0.0498555\pi\)
\(308\) 0 0
\(309\) 534.589i 1.73006i
\(310\) 0 0
\(311\) −42.0102 −0.135081 −0.0675405 0.997717i \(-0.521515\pi\)
−0.0675405 + 0.997717i \(0.521515\pi\)
\(312\) 0 0
\(313\) −425.054 + 425.054i −1.35800 + 1.35800i −0.481619 + 0.876381i \(0.659951\pi\)
−0.876381 + 0.481619i \(0.840049\pi\)
\(314\) 0 0
\(315\) 120.261 226.692i 0.381780 0.719656i
\(316\) 0 0
\(317\) −122.941 + 122.941i −0.387826 + 0.387826i −0.873911 0.486085i \(-0.838424\pi\)
0.486085 + 0.873911i \(0.338424\pi\)
\(318\) 0 0
\(319\) 239.922 0.752105
\(320\) 0 0
\(321\) 356.387i 1.11024i
\(322\) 0 0
\(323\) 219.946 219.946i 0.680946 0.680946i
\(324\) 0 0
\(325\) −106.294 501.249i −0.327059 1.54230i
\(326\) 0 0
\(327\) −361.408 + 361.408i −1.10522 + 1.10522i
\(328\) 0 0
\(329\) −71.9694 + 355.887i −0.218752 + 1.08172i
\(330\) 0 0
\(331\) 341.959i 1.03311i 0.856255 + 0.516554i \(0.172785\pi\)
−0.856255 + 0.516554i \(0.827215\pi\)
\(332\) 0 0
\(333\) −174.685 174.685i −0.524581 0.524581i
\(334\) 0 0
\(335\) −36.5564 + 123.305i −0.109124 + 0.368074i
\(336\) 0 0
\(337\) 65.4453 65.4453i 0.194200 0.194200i −0.603308 0.797508i \(-0.706151\pi\)
0.797508 + 0.603308i \(0.206151\pi\)
\(338\) 0 0
\(339\) 687.825i 2.02898i
\(340\) 0 0
\(341\) 308.372i 0.904316i
\(342\) 0 0
\(343\) 63.6987 + 337.033i 0.185710 + 0.982605i
\(344\) 0 0
\(345\) 317.592 + 585.264i 0.920557 + 1.69642i
\(346\) 0 0
\(347\) −167.988 167.988i −0.484115 0.484115i 0.422328 0.906443i \(-0.361213\pi\)
−0.906443 + 0.422328i \(0.861213\pi\)
\(348\) 0 0
\(349\) 585.750 1.67837 0.839183 0.543849i \(-0.183034\pi\)
0.839183 + 0.543849i \(0.183034\pi\)
\(350\) 0 0
\(351\) 138.169i 0.393644i
\(352\) 0 0
\(353\) 273.147 273.147i 0.773788 0.773788i −0.204978 0.978766i \(-0.565712\pi\)
0.978766 + 0.204978i \(0.0657124\pi\)
\(354\) 0 0
\(355\) 10.7319 5.82364i 0.0302307 0.0164046i
\(356\) 0 0
\(357\) 132.642 + 199.888i 0.371547 + 0.559911i
\(358\) 0 0
\(359\) −629.890 −1.75457 −0.877284 0.479972i \(-0.840647\pi\)
−0.877284 + 0.479972i \(0.840647\pi\)
\(360\) 0 0
\(361\) −984.405 −2.72688
\(362\) 0 0
\(363\) −46.2439 46.2439i −0.127394 0.127394i
\(364\) 0 0
\(365\) 332.117 + 98.4637i 0.909911 + 0.269764i
\(366\) 0 0
\(367\) −319.121 + 319.121i −0.869539 + 0.869539i −0.992421 0.122882i \(-0.960786\pi\)
0.122882 + 0.992421i \(0.460786\pi\)
\(368\) 0 0
\(369\) 32.9701 0.0893498
\(370\) 0 0
\(371\) −595.182 120.361i −1.60426 0.324423i
\(372\) 0 0
\(373\) −177.325 177.325i −0.475403 0.475403i 0.428255 0.903658i \(-0.359129\pi\)
−0.903658 + 0.428255i \(0.859129\pi\)
\(374\) 0 0
\(375\) −327.800 384.360i −0.874134 1.02496i
\(376\) 0 0
\(377\) −296.872 296.872i −0.787460 0.787460i
\(378\) 0 0
\(379\) −159.370 −0.420502 −0.210251 0.977647i \(-0.567428\pi\)
−0.210251 + 0.977647i \(0.567428\pi\)
\(380\) 0 0
\(381\) 635.507i 1.66800i
\(382\) 0 0
\(383\) 176.444 + 176.444i 0.460690 + 0.460690i 0.898882 0.438192i \(-0.144381\pi\)
−0.438192 + 0.898882i \(0.644381\pi\)
\(384\) 0 0
\(385\) −192.114 + 362.134i −0.498996 + 0.940608i
\(386\) 0 0
\(387\) 122.041 + 122.041i 0.315350 + 0.315350i
\(388\) 0 0
\(389\) 215.017i 0.552743i −0.961051 0.276372i \(-0.910868\pi\)
0.961051 0.276372i \(-0.0891320\pi\)
\(390\) 0 0
\(391\) −279.456 −0.714720
\(392\) 0 0
\(393\) −83.6390 83.6390i −0.212822 0.212822i
\(394\) 0 0
\(395\) −144.408 266.117i −0.365590 0.673715i
\(396\) 0 0
\(397\) −228.720 228.720i −0.576120 0.576120i 0.357712 0.933832i \(-0.383557\pi\)
−0.933832 + 0.357712i \(0.883557\pi\)
\(398\) 0 0
\(399\) 205.672 1017.04i 0.515468 2.54898i
\(400\) 0 0
\(401\) 91.4324 0.228011 0.114005 0.993480i \(-0.463632\pi\)
0.114005 + 0.993480i \(0.463632\pi\)
\(402\) 0 0
\(403\) 381.571 381.571i 0.946826 0.946826i
\(404\) 0 0
\(405\) 222.331 + 409.716i 0.548966 + 1.01164i
\(406\) 0 0
\(407\) 279.056 + 279.056i 0.685640 + 0.685640i
\(408\) 0 0
\(409\) −449.942 −1.10010 −0.550051 0.835131i \(-0.685392\pi\)
−0.550051 + 0.835131i \(0.685392\pi\)
\(410\) 0 0
\(411\) 355.790 0.865670
\(412\) 0 0
\(413\) 166.876 + 251.478i 0.404059 + 0.608906i
\(414\) 0 0
\(415\) 52.8847 178.380i 0.127433 0.429831i
\(416\) 0 0
\(417\) −82.2787 + 82.2787i −0.197311 + 0.197311i
\(418\) 0 0
\(419\) 90.3853i 0.215717i −0.994166 0.107858i \(-0.965601\pi\)
0.994166 0.107858i \(-0.0343993\pi\)
\(420\) 0 0
\(421\) −578.784 −1.37478 −0.687392 0.726287i \(-0.741244\pi\)
−0.687392 + 0.726287i \(0.741244\pi\)
\(422\) 0 0
\(423\) 268.917 + 268.917i 0.635737 + 0.635737i
\(424\) 0 0
\(425\) 207.392 43.9793i 0.487981 0.103481i
\(426\) 0 0
\(427\) −338.677 510.378i −0.793155 1.19526i
\(428\) 0 0
\(429\) 970.137i 2.26139i
\(430\) 0 0
\(431\) 390.588i 0.906237i −0.891450 0.453119i \(-0.850311\pi\)
0.891450 0.453119i \(-0.149689\pi\)
\(432\) 0 0
\(433\) 19.2331 19.2331i 0.0444183 0.0444183i −0.684549 0.728967i \(-0.740001\pi\)
0.728967 + 0.684549i \(0.240001\pi\)
\(434\) 0 0
\(435\) −396.839 117.652i −0.912273 0.270464i
\(436\) 0 0
\(437\) 854.714 + 854.714i 1.95587 + 1.95587i
\(438\) 0 0
\(439\) 383.748i 0.874141i 0.899427 + 0.437071i \(0.143984\pi\)
−0.899427 + 0.437071i \(0.856016\pi\)
\(440\) 0 0
\(441\) 331.033 + 139.595i 0.750641 + 0.316542i
\(442\) 0 0
\(443\) −568.705 + 568.705i −1.28376 + 1.28376i −0.345245 + 0.938513i \(0.612204\pi\)
−0.938513 + 0.345245i \(0.887796\pi\)
\(444\) 0 0
\(445\) −359.295 662.114i −0.807403 1.48790i
\(446\) 0 0
\(447\) 537.816 537.816i 1.20317 1.20317i
\(448\) 0 0
\(449\) 135.957i 0.302799i −0.988473 0.151399i \(-0.951622\pi\)
0.988473 0.151399i \(-0.0483779\pi\)
\(450\) 0 0
\(451\) −52.6689 −0.116783
\(452\) 0 0
\(453\) −159.562 + 159.562i −0.352233 + 0.352233i
\(454\) 0 0
\(455\) 685.811 210.379i 1.50728 0.462371i
\(456\) 0 0
\(457\) 23.9199 23.9199i 0.0523411 0.0523411i −0.680452 0.732793i \(-0.738216\pi\)
0.732793 + 0.680452i \(0.238216\pi\)
\(458\) 0 0
\(459\) −57.1674 −0.124548
\(460\) 0 0
\(461\) 621.530i 1.34822i −0.738630 0.674111i \(-0.764527\pi\)
0.738630 0.674111i \(-0.235473\pi\)
\(462\) 0 0
\(463\) 252.742 252.742i 0.545878 0.545878i −0.379368 0.925246i \(-0.623859\pi\)
0.925246 + 0.379368i \(0.123859\pi\)
\(464\) 0 0
\(465\) 151.218 510.058i 0.325200 1.09690i
\(466\) 0 0
\(467\) −159.233 + 159.233i −0.340971 + 0.340971i −0.856732 0.515761i \(-0.827509\pi\)
0.515761 + 0.856732i \(0.327509\pi\)
\(468\) 0 0
\(469\) −176.481 35.6889i −0.376292 0.0760958i
\(470\) 0 0
\(471\) 461.075i 0.978928i
\(472\) 0 0
\(473\) −194.957 194.957i −0.412171 0.412171i
\(474\) 0 0
\(475\) −768.818 499.797i −1.61856 1.05220i
\(476\) 0 0
\(477\) −449.734 + 449.734i −0.942839 + 0.942839i
\(478\) 0 0
\(479\) 180.606i 0.377048i −0.982069 0.188524i \(-0.939630\pi\)
0.982069 0.188524i \(-0.0603704\pi\)
\(480\) 0 0
\(481\) 690.591i 1.43574i
\(482\) 0 0
\(483\) −776.770 + 515.450i −1.60822 + 1.06719i
\(484\) 0 0
\(485\) 8.92235 30.0950i 0.0183966 0.0620516i
\(486\) 0 0
\(487\) −115.113 115.113i −0.236371 0.236371i 0.578974 0.815346i \(-0.303453\pi\)
−0.815346 + 0.578974i \(0.803453\pi\)
\(488\) 0 0
\(489\) 1096.20 2.24172
\(490\) 0 0
\(491\) 281.934i 0.574204i −0.957900 0.287102i \(-0.907308\pi\)
0.957900 0.287102i \(-0.0926919\pi\)
\(492\) 0 0
\(493\) 122.831 122.831i 0.249150 0.249150i
\(494\) 0 0
\(495\) 204.789 + 377.389i 0.413716 + 0.762403i
\(496\) 0 0
\(497\) 9.45174 + 14.2435i 0.0190176 + 0.0286590i
\(498\) 0 0
\(499\) 791.794 1.58676 0.793381 0.608725i \(-0.208319\pi\)
0.793381 + 0.608725i \(0.208319\pi\)
\(500\) 0 0
\(501\) 898.520 1.79345
\(502\) 0 0
\(503\) −545.299 545.299i −1.08409 1.08409i −0.996123 0.0879699i \(-0.971962\pi\)
−0.0879699 0.996123i \(-0.528038\pi\)
\(504\) 0 0
\(505\) −409.321 + 222.117i −0.810537 + 0.439836i
\(506\) 0 0
\(507\) 717.485 717.485i 1.41516 1.41516i
\(508\) 0 0
\(509\) 52.8163 0.103765 0.0518824 0.998653i \(-0.483478\pi\)
0.0518824 + 0.998653i \(0.483478\pi\)
\(510\) 0 0
\(511\) −96.1271 + 475.346i −0.188116 + 0.930227i
\(512\) 0 0
\(513\) 174.846 + 174.846i 0.340831 + 0.340831i
\(514\) 0 0
\(515\) −188.002 + 634.130i −0.365053 + 1.23132i
\(516\) 0 0
\(517\) −429.588 429.588i −0.830925 0.830925i
\(518\) 0 0
\(519\) 417.914 0.805229
\(520\) 0 0
\(521\) 217.945i 0.418320i −0.977881 0.209160i \(-0.932927\pi\)
0.977881 0.209160i \(-0.0670729\pi\)
\(522\) 0 0
\(523\) 92.4479 + 92.4479i 0.176765 + 0.176765i 0.789944 0.613179i \(-0.210110\pi\)
−0.613179 + 0.789944i \(0.710110\pi\)
\(524\) 0 0
\(525\) 495.345 504.775i 0.943514 0.961476i
\(526\) 0 0
\(527\) 157.875 + 157.875i 0.299573 + 0.299573i
\(528\) 0 0
\(529\) 556.971i 1.05288i
\(530\) 0 0
\(531\) 316.119 0.595327
\(532\) 0 0
\(533\) 65.1711 + 65.1711i 0.122272 + 0.122272i
\(534\) 0 0
\(535\) −125.333 + 422.747i −0.234267 + 0.790181i
\(536\) 0 0
\(537\) −29.2329 29.2329i −0.0544374 0.0544374i
\(538\) 0 0
\(539\) −528.816 223.000i −0.981107 0.413729i
\(540\) 0 0
\(541\) 587.090 1.08519 0.542597 0.839993i \(-0.317441\pi\)
0.542597 + 0.839993i \(0.317441\pi\)
\(542\) 0 0
\(543\) 111.036 111.036i 0.204486 0.204486i
\(544\) 0 0
\(545\) −555.801 + 301.604i −1.01982 + 0.553402i
\(546\) 0 0
\(547\) 569.353 + 569.353i 1.04086 + 1.04086i 0.999129 + 0.0417361i \(0.0132889\pi\)
0.0417361 + 0.999129i \(0.486711\pi\)
\(548\) 0 0
\(549\) −641.567 −1.16861
\(550\) 0 0
\(551\) −751.356 −1.36362
\(552\) 0 0
\(553\) 353.195 234.373i 0.638688 0.423822i
\(554\) 0 0
\(555\) −324.726 598.410i −0.585091 1.07822i
\(556\) 0 0
\(557\) −672.490 + 672.490i −1.20734 + 1.20734i −0.235460 + 0.971884i \(0.575660\pi\)
−0.971884 + 0.235460i \(0.924340\pi\)
\(558\) 0 0
\(559\) 482.469i 0.863092i
\(560\) 0 0
\(561\) −401.395 −0.715498
\(562\) 0 0
\(563\) 102.534 + 102.534i 0.182122 + 0.182122i 0.792280 0.610158i \(-0.208894\pi\)
−0.610158 + 0.792280i \(0.708894\pi\)
\(564\) 0 0
\(565\) −241.891 + 815.898i −0.428126 + 1.44407i
\(566\) 0 0
\(567\) −543.780 + 360.842i −0.959048 + 0.636406i
\(568\) 0 0
\(569\) 393.120i 0.690896i 0.938438 + 0.345448i \(0.112273\pi\)
−0.938438 + 0.345448i \(0.887727\pi\)
\(570\) 0 0
\(571\) 732.228i 1.28236i −0.767390 0.641181i \(-0.778445\pi\)
0.767390 0.641181i \(-0.221555\pi\)
\(572\) 0 0
\(573\) −501.855 + 501.855i −0.875837 + 0.875837i
\(574\) 0 0
\(575\) 170.905 + 805.930i 0.297225 + 1.40162i
\(576\) 0 0
\(577\) −218.570 218.570i −0.378804 0.378804i 0.491867 0.870671i \(-0.336315\pi\)
−0.870671 + 0.491867i \(0.836315\pi\)
\(578\) 0 0
\(579\) 3.60278i 0.00622241i
\(580\) 0 0
\(581\) 255.308 + 51.6297i 0.439428 + 0.0888636i
\(582\) 0 0
\(583\) 718.439 718.439i 1.23231 1.23231i
\(584\) 0 0
\(585\) 213.571 720.372i 0.365078 1.23141i
\(586\) 0 0
\(587\) −70.1851 + 70.1851i −0.119566 + 0.119566i −0.764358 0.644792i \(-0.776944\pi\)
0.644792 + 0.764358i \(0.276944\pi\)
\(588\) 0 0
\(589\) 965.720i 1.63959i
\(590\) 0 0
\(591\) 388.949 0.658120
\(592\) 0 0
\(593\) −49.9921 + 49.9921i −0.0843037 + 0.0843037i −0.748001 0.663697i \(-0.768986\pi\)
0.663697 + 0.748001i \(0.268986\pi\)
\(594\) 0 0
\(595\) 87.0443 + 283.755i 0.146293 + 0.476899i
\(596\) 0 0
\(597\) 608.271 608.271i 1.01888 1.01888i
\(598\) 0 0
\(599\) −600.100 −1.00184 −0.500918 0.865495i \(-0.667004\pi\)
−0.500918 + 0.865495i \(0.667004\pi\)
\(600\) 0 0
\(601\) 92.4735i 0.153866i −0.997036 0.0769330i \(-0.975487\pi\)
0.997036 0.0769330i \(-0.0245128\pi\)
\(602\) 0 0
\(603\) −133.353 + 133.353i −0.221150 + 0.221150i
\(604\) 0 0
\(605\) −38.5917 71.1175i −0.0637880 0.117550i
\(606\) 0 0
\(607\) −73.6071 + 73.6071i −0.121264 + 0.121264i −0.765134 0.643871i \(-0.777327\pi\)
0.643871 + 0.765134i \(0.277327\pi\)
\(608\) 0 0
\(609\) 114.860 567.979i 0.188604 0.932642i
\(610\) 0 0
\(611\) 1063.12i 1.73997i
\(612\) 0 0
\(613\) 172.983 + 172.983i 0.282191 + 0.282191i 0.833982 0.551791i \(-0.186056\pi\)
−0.551791 + 0.833982i \(0.686056\pi\)
\(614\) 0 0
\(615\) 87.1162 + 25.8276i 0.141652 + 0.0419960i
\(616\) 0 0
\(617\) 609.132 609.132i 0.987247 0.987247i −0.0126723 0.999920i \(-0.504034\pi\)
0.999920 + 0.0126723i \(0.00403382\pi\)
\(618\) 0 0
\(619\) 294.093i 0.475111i 0.971374 + 0.237555i \(0.0763461\pi\)
−0.971374 + 0.237555i \(0.923654\pi\)
\(620\) 0 0
\(621\) 222.154i 0.357736i
\(622\) 0 0
\(623\) 878.767 583.133i 1.41054 0.936009i
\(624\) 0 0
\(625\) −253.666 571.208i −0.405866 0.913932i
\(626\) 0 0
\(627\) 1227.66 + 1227.66i 1.95800 + 1.95800i
\(628\) 0 0
\(629\) 285.733 0.454265
\(630\) 0 0
\(631\) 528.242i 0.837150i −0.908182 0.418575i \(-0.862530\pi\)
0.908182 0.418575i \(-0.137470\pi\)
\(632\) 0 0
\(633\) −97.0290 + 97.0290i −0.153284 + 0.153284i
\(634\) 0 0
\(635\) −223.492 + 753.838i −0.351956 + 1.18715i
\(636\) 0 0
\(637\) 378.409 + 930.277i 0.594049 + 1.46040i
\(638\) 0 0
\(639\) 17.9047 0.0280199
\(640\) 0 0
\(641\) 1022.97 1.59590 0.797952 0.602722i \(-0.205917\pi\)
0.797952 + 0.602722i \(0.205917\pi\)
\(642\) 0 0
\(643\) −406.646 406.646i −0.632421 0.632421i 0.316254 0.948675i \(-0.397575\pi\)
−0.948675 + 0.316254i \(0.897575\pi\)
\(644\) 0 0
\(645\) 226.863 + 418.068i 0.351726 + 0.648167i
\(646\) 0 0
\(647\) −588.599 + 588.599i −0.909736 + 0.909736i −0.996251 0.0865148i \(-0.972427\pi\)
0.0865148 + 0.996251i \(0.472427\pi\)
\(648\) 0 0
\(649\) −504.992 −0.778108
\(650\) 0 0
\(651\) 730.025 + 147.630i 1.12139 + 0.226773i
\(652\) 0 0
\(653\) 38.7491 + 38.7491i 0.0593401 + 0.0593401i 0.736154 0.676814i \(-0.236640\pi\)
−0.676814 + 0.736154i \(0.736640\pi\)
\(654\) 0 0
\(655\) −69.7989 128.627i −0.106563 0.196376i
\(656\) 0 0
\(657\) 359.183 + 359.183i 0.546702 + 0.546702i
\(658\) 0 0
\(659\) −257.285 −0.390417 −0.195208 0.980762i \(-0.562538\pi\)
−0.195208 + 0.980762i \(0.562538\pi\)
\(660\) 0 0
\(661\) 888.512i 1.34419i 0.740463 + 0.672097i \(0.234606\pi\)
−0.740463 + 0.672097i \(0.765394\pi\)
\(662\) 0 0
\(663\) 496.675 + 496.675i 0.749132 + 0.749132i
\(664\) 0 0
\(665\) 601.638 1134.09i 0.904718 1.70539i
\(666\) 0 0
\(667\) 477.324 + 477.324i 0.715629 + 0.715629i
\(668\) 0 0
\(669\) 589.504i 0.881172i
\(670\) 0 0
\(671\) 1024.89 1.52740
\(672\) 0 0
\(673\) 692.344 + 692.344i 1.02874 + 1.02874i 0.999575 + 0.0291678i \(0.00928572\pi\)
0.0291678 + 0.999575i \(0.490714\pi\)
\(674\) 0 0
\(675\) 34.9615 + 164.867i 0.0517948 + 0.244247i
\(676\) 0 0
\(677\) −809.012 809.012i −1.19500 1.19500i −0.975646 0.219349i \(-0.929607\pi\)
−0.219349 0.975646i \(-0.570393\pi\)
\(678\) 0 0
\(679\) 43.0738 + 8.71062i 0.0634371 + 0.0128286i
\(680\) 0 0
\(681\) −231.103 −0.339359
\(682\) 0 0
\(683\) 422.972 422.972i 0.619286 0.619286i −0.326062 0.945348i \(-0.605722\pi\)
0.945348 + 0.326062i \(0.105722\pi\)
\(684\) 0 0
\(685\) 422.039 + 125.123i 0.616115 + 0.182661i
\(686\) 0 0
\(687\) 686.393 + 686.393i 0.999117 + 0.999117i
\(688\) 0 0
\(689\) −1777.95 −2.58049
\(690\) 0 0
\(691\) 646.537 0.935655 0.467827 0.883820i \(-0.345037\pi\)
0.467827 + 0.883820i \(0.345037\pi\)
\(692\) 0 0
\(693\) −500.876 + 332.372i −0.722765 + 0.479614i
\(694\) 0 0
\(695\) −126.535 + 68.6637i −0.182064 + 0.0987966i
\(696\) 0 0
\(697\) −26.9646 + 26.9646i −0.0386866 + 0.0386866i
\(698\) 0 0
\(699\) 1107.80i 1.58483i
\(700\) 0 0
\(701\) 564.754 0.805640 0.402820 0.915279i \(-0.368030\pi\)
0.402820 + 0.915279i \(0.368030\pi\)
\(702\) 0 0
\(703\) −873.912 873.912i −1.24312 1.24312i
\(704\) 0 0
\(705\) 499.894 + 921.214i 0.709070 + 1.30669i
\(706\) 0 0
\(707\) −360.495 543.257i −0.509894 0.768397i
\(708\) 0 0
\(709\) 642.159i 0.905725i −0.891580 0.452862i \(-0.850403\pi\)
0.891580 0.452862i \(-0.149597\pi\)
\(710\) 0 0
\(711\) 443.981i 0.624445i
\(712\) 0 0
\(713\) −613.506 + 613.506i −0.860457 + 0.860457i
\(714\) 0 0
\(715\) −341.174 + 1150.78i −0.477166 + 1.60948i
\(716\) 0 0
\(717\) −97.6765 97.6765i −0.136229 0.136229i
\(718\) 0 0
\(719\) 1332.43i 1.85318i −0.376077 0.926588i \(-0.622727\pi\)
0.376077 0.926588i \(-0.377273\pi\)
\(720\) 0 0
\(721\) −907.604 183.541i −1.25881 0.254564i
\(722\) 0 0
\(723\) −740.884 + 740.884i −1.02474 + 1.02474i
\(724\) 0 0
\(725\) −429.355 279.117i −0.592214 0.384989i
\(726\) 0 0
\(727\) 130.596 130.596i 0.179637 0.179637i −0.611560 0.791198i \(-0.709458\pi\)
0.791198 + 0.611560i \(0.209458\pi\)
\(728\) 0 0
\(729\) 438.363i 0.601321i
\(730\) 0 0
\(731\) −199.622 −0.273080
\(732\) 0 0
\(733\) 430.727 430.727i 0.587622 0.587622i −0.349364 0.936987i \(-0.613602\pi\)
0.936987 + 0.349364i \(0.113602\pi\)
\(734\) 0 0
\(735\) 765.327 + 628.168i 1.04126 + 0.854651i
\(736\) 0 0
\(737\) 213.029 213.029i 0.289048 0.289048i
\(738\) 0 0
\(739\) −1201.95 −1.62646 −0.813230 0.581942i \(-0.802293\pi\)
−0.813230 + 0.581942i \(0.802293\pi\)
\(740\) 0 0
\(741\) 3038.15i 4.10007i
\(742\) 0 0
\(743\) 925.606 925.606i 1.24577 1.24577i 0.288197 0.957571i \(-0.406944\pi\)
0.957571 0.288197i \(-0.0930557\pi\)
\(744\) 0 0
\(745\) 827.094 448.821i 1.11019 0.602444i
\(746\) 0 0
\(747\) 192.917 192.917i 0.258255 0.258255i
\(748\) 0 0
\(749\) −605.060 122.359i −0.807824 0.163363i
\(750\) 0 0
\(751\) 334.942i 0.445995i −0.974819 0.222998i \(-0.928416\pi\)
0.974819 0.222998i \(-0.0715842\pi\)
\(752\) 0 0
\(753\) 785.038 + 785.038i 1.04255 + 1.04255i
\(754\) 0 0
\(755\) −245.386 + 133.158i −0.325015 + 0.176368i
\(756\) 0 0
\(757\) 921.038 921.038i 1.21669 1.21669i 0.247913 0.968782i \(-0.420255\pi\)
0.968782 0.247913i \(-0.0797446\pi\)
\(758\) 0 0
\(759\) 1559.83i 2.05511i
\(760\) 0 0
\(761\) 168.289i 0.221142i 0.993868 + 0.110571i \(0.0352679\pi\)
−0.993868 + 0.110571i \(0.964732\pi\)
\(762\) 0 0
\(763\) −489.502 737.667i −0.641549 0.966798i
\(764\) 0 0
\(765\) 298.054 + 88.3649i 0.389614 + 0.115510i
\(766\) 0 0
\(767\) 624.863 + 624.863i 0.814684 + 0.814684i
\(768\) 0 0
\(769\) 100.837 0.131127 0.0655636 0.997848i \(-0.479115\pi\)
0.0655636 + 0.997848i \(0.479115\pi\)
\(770\) 0 0
\(771\) 691.001i 0.896240i
\(772\) 0 0
\(773\) 349.162 349.162i 0.451697 0.451697i −0.444221 0.895917i \(-0.646519\pi\)
0.895917 + 0.444221i \(0.146519\pi\)
\(774\) 0 0
\(775\) 358.750 551.851i 0.462903 0.712066i
\(776\) 0 0
\(777\) 794.218 527.028i 1.02216 0.678286i
\(778\) 0 0
\(779\) 164.942 0.211736
\(780\) 0 0
\(781\) −28.6023 −0.0366227
\(782\) 0 0
\(783\) 97.6449 + 97.6449i 0.124706 + 0.124706i
\(784\) 0 0
\(785\) 162.149 546.927i 0.206559 0.696723i
\(786\) 0 0
\(787\) −262.165 + 262.165i −0.333119 + 0.333119i −0.853770 0.520651i \(-0.825689\pi\)
0.520651 + 0.853770i \(0.325689\pi\)
\(788\) 0 0
\(789\) 70.5489 0.0894156
\(790\) 0 0
\(791\) −1167.76 236.151i −1.47631 0.298548i
\(792\) 0 0
\(793\) −1268.17 1268.17i −1.59920 1.59920i
\(794\) 0 0
\(795\) −1540.63 + 836.019i −1.93790 + 1.05160i
\(796\) 0 0
\(797\) 391.513 + 391.513i 0.491234 + 0.491234i 0.908695 0.417461i \(-0.137080\pi\)
−0.417461 + 0.908695i \(0.637080\pi\)
\(798\) 0 0
\(799\) −439.867 −0.550522
\(800\) 0 0
\(801\) 1104.65i 1.37909i
\(802\) 0 0
\(803\) −573.786 573.786i −0.714553 0.714553i
\(804\) 0 0
\(805\) −1102.68 + 338.256i −1.36979 + 0.420194i
\(806\) 0 0
\(807\) −657.019 657.019i −0.814150 0.814150i
\(808\) 0 0
\(809\) 1187.70i 1.46811i 0.679090 + 0.734055i \(0.262374\pi\)
−0.679090 + 0.734055i \(0.737626\pi\)
\(810\) 0 0
\(811\) 594.162 0.732629 0.366315 0.930491i \(-0.380619\pi\)
0.366315 + 0.930491i \(0.380619\pi\)
\(812\) 0 0
\(813\) −255.808 255.808i −0.314647 0.314647i
\(814\) 0 0
\(815\) 1300.31 + 385.507i 1.59548 + 0.473015i
\(816\) 0 0
\(817\) 610.542 + 610.542i 0.747297 + 0.747297i
\(818\) 0 0
\(819\) 1031.04 + 208.502i 1.25890 + 0.254582i
\(820\) 0 0
\(821\) −1377.44 −1.67775 −0.838877 0.544321i \(-0.816787\pi\)
−0.838877 + 0.544321i \(0.816787\pi\)
\(822\) 0 0
\(823\) −372.252 + 372.252i −0.452310 + 0.452310i −0.896121 0.443810i \(-0.853626\pi\)
0.443810 + 0.896121i \(0.353626\pi\)
\(824\) 0 0
\(825\) 245.478 + 1157.59i 0.297549 + 1.40314i
\(826\) 0 0
\(827\) −720.119 720.119i −0.870760 0.870760i 0.121795 0.992555i \(-0.461135\pi\)
−0.992555 + 0.121795i \(0.961135\pi\)
\(828\) 0 0
\(829\) 624.212 0.752969 0.376485 0.926423i \(-0.377133\pi\)
0.376485 + 0.926423i \(0.377133\pi\)
\(830\) 0 0
\(831\) −481.149 −0.579000
\(832\) 0 0
\(833\) −384.902 + 156.567i −0.462068 + 0.187955i
\(834\) 0 0
\(835\) 1065.82 + 315.988i 1.27644 + 0.378428i
\(836\) 0 0
\(837\) −125.503 + 125.503i −0.149944 + 0.149944i
\(838\) 0 0
\(839\) 748.029i 0.891572i −0.895140 0.445786i \(-0.852924\pi\)
0.895140 0.445786i \(-0.147076\pi\)
\(840\) 0 0
\(841\) 421.397 0.501066
\(842\) 0 0
\(843\) 449.134 + 449.134i 0.532781 + 0.532781i
\(844\) 0 0
\(845\) 1103.40 598.759i 1.30580 0.708590i
\(846\) 0 0
\(847\) 94.3881 62.6342i 0.111438 0.0739483i
\(848\) 0 0
\(849\) 47.5783i 0.0560404i
\(850\) 0 0
\(851\) 1110.36i 1.30477i
\(852\) 0 0
\(853\) −629.600 + 629.600i −0.738101 + 0.738101i −0.972210 0.234110i \(-0.924783\pi\)
0.234110 + 0.972210i \(0.424783\pi\)
\(854\) 0 0
\(855\) −641.334 1181.86i −0.750098 1.38229i
\(856\) 0 0
\(857\) 997.028 + 997.028i 1.16339 + 1.16339i 0.983728 + 0.179665i \(0.0575014\pi\)
0.179665 + 0.983728i \(0.442499\pi\)
\(858\) 0 0
\(859\) 182.926i 0.212952i 0.994315 + 0.106476i \(0.0339567\pi\)
−0.994315 + 0.106476i \(0.966043\pi\)
\(860\) 0 0
\(861\) −25.2147 + 124.686i −0.0292853 + 0.144815i
\(862\) 0 0
\(863\) −310.483 + 310.483i −0.359771 + 0.359771i −0.863729 0.503957i \(-0.831877\pi\)
0.503957 + 0.863729i \(0.331877\pi\)
\(864\) 0 0
\(865\) 495.729 + 146.970i 0.573098 + 0.169908i
\(866\) 0 0
\(867\) 620.350 620.350i 0.715514 0.715514i
\(868\) 0 0
\(869\) 709.248i 0.816166i
\(870\) 0 0
\(871\) −527.191 −0.605271
\(872\) 0 0
\(873\) 32.5476 32.5476i 0.0372825 0.0372825i
\(874\) 0 0
\(875\) 765.095 424.564i 0.874395 0.485215i
\(876\) 0 0
\(877\) −393.583 + 393.583i −0.448784 + 0.448784i −0.894950 0.446166i \(-0.852789\pi\)
0.446166 + 0.894950i \(0.352789\pi\)
\(878\) 0 0
\(879\) 1616.53 1.83906
\(880\) 0 0
\(881\) 1426.89i 1.61963i 0.586685 + 0.809815i \(0.300433\pi\)
−0.586685 + 0.809815i \(0.699567\pi\)
\(882\) 0 0
\(883\) 15.5765 15.5765i 0.0176404 0.0176404i −0.698232 0.715872i \(-0.746029\pi\)
0.715872 + 0.698232i \(0.246029\pi\)
\(884\) 0 0
\(885\) 835.274 + 247.636i 0.943813 + 0.279814i
\(886\) 0 0
\(887\) 437.315 437.315i 0.493027 0.493027i −0.416232 0.909259i \(-0.636649\pi\)
0.909259 + 0.416232i \(0.136649\pi\)
\(888\) 0 0
\(889\) −1078.94 218.189i −1.21365 0.245432i
\(890\) 0 0
\(891\) 1091.96i 1.22555i
\(892\) 0 0
\(893\) 1345.33 + 1345.33i 1.50653 + 1.50653i
\(894\) 0 0
\(895\) −24.3956 44.9566i −0.0272576 0.0502308i
\(896\) 0 0
\(897\) −1930.09 + 1930.09i −2.15172 + 2.15172i
\(898\) 0 0
\(899\) 539.317i 0.599908i
\(900\) 0 0
\(901\) 735.629i 0.816459i
\(902\) 0 0
\(903\) −554.865 + 368.198i −0.614469 + 0.407750i
\(904\) 0 0
\(905\) 170.760 92.6623i 0.188685 0.102389i
\(906\) 0 0
\(907\) −78.2530 78.2530i −0.0862767 0.0862767i 0.662651 0.748928i \(-0.269431\pi\)
−0.748928 + 0.662651i \(0.769431\pi\)
\(908\) 0 0
\(909\) −682.897 −0.751262
\(910\) 0 0
\(911\) 1258.62i 1.38158i 0.723055 + 0.690790i \(0.242737\pi\)
−0.723055 + 0.690790i \(0.757263\pi\)
\(912\) 0 0
\(913\) −308.180 + 308.180i −0.337547 + 0.337547i
\(914\) 0 0
\(915\) −1695.20 502.580i −1.85268 0.549268i
\(916\) 0 0
\(917\) 170.715 113.283i 0.186167 0.123537i
\(918\) 0 0
\(919\) 211.416 0.230050 0.115025 0.993363i \(-0.463305\pi\)
0.115025 + 0.993363i \(0.463305\pi\)
\(920\) 0 0
\(921\) 1459.41 1.58459
\(922\) 0 0
\(923\) 35.3917 + 35.3917i 0.0383443 + 0.0383443i
\(924\) 0 0
\(925\) −174.743 824.032i −0.188912 0.890846i
\(926\) 0 0
\(927\) −685.808 + 685.808i −0.739814 + 0.739814i
\(928\) 0 0
\(929\) −612.755 −0.659586 −0.329793 0.944053i \(-0.606979\pi\)
−0.329793 + 0.944053i \(0.606979\pi\)
\(930\) 0 0
\(931\) 1656.08 + 698.363i 1.77882 + 0.750122i
\(932\) 0 0
\(933\) −120.049 120.049i −0.128670 0.128670i
\(934\) 0 0
\(935\) −476.135 141.161i −0.509235 0.150974i
\(936\) 0 0
\(937\) −442.331 442.331i −0.472072 0.472072i 0.430513 0.902585i \(-0.358333\pi\)
−0.902585 + 0.430513i \(0.858333\pi\)
\(938\) 0 0
\(939\) −2429.28 −2.58709
\(940\) 0 0
\(941\) 320.999i 0.341126i −0.985347 0.170563i \(-0.945441\pi\)
0.985347 0.170563i \(-0.0545586\pi\)
\(942\) 0 0
\(943\) −104.785 104.785i −0.111119 0.111119i
\(944\) 0 0
\(945\) −225.572 + 69.1961i −0.238700 + 0.0732234i
\(946\) 0 0
\(947\) −1056.12 1056.12i −1.11522 1.11522i −0.992432 0.122791i \(-0.960815\pi\)
−0.122791 0.992432i \(-0.539185\pi\)
\(948\) 0 0
\(949\) 1419.97i 1.49629i
\(950\) 0 0
\(951\) −702.635 −0.738838
\(952\) 0 0
\(953\) −387.860 387.860i −0.406989 0.406989i 0.473698 0.880687i \(-0.342919\pi\)
−0.880687 + 0.473698i \(0.842919\pi\)
\(954\) 0 0
\(955\) −771.790 + 418.810i −0.808157 + 0.438545i
\(956\) 0 0
\(957\) 685.602 + 685.602i 0.716408 + 0.716408i
\(958\) 0 0
\(959\) −122.154 + 604.047i −0.127376 + 0.629872i
\(960\) 0 0
\(961\) −267.814 −0.278683
\(962\) 0 0
\(963\) −457.198 + 457.198i −0.474765 + 0.474765i
\(964\) 0 0
\(965\) 1.26701 4.27362i 0.00131296 0.00442862i
\(966\) 0 0
\(967\) −950.567 950.567i −0.983006 0.983006i 0.0168518 0.999858i \(-0.494636\pi\)
−0.999858 + 0.0168518i \(0.994636\pi\)
\(968\) 0 0
\(969\) 1257.04 1.29725
\(970\) 0 0
\(971\) 1734.43 1.78623 0.893116 0.449827i \(-0.148514\pi\)
0.893116 + 0.449827i \(0.148514\pi\)
\(972\) 0 0
\(973\) −111.441 167.938i −0.114533 0.172599i
\(974\) 0 0
\(975\) 1128.63 1736.12i 1.15757 1.78064i
\(976\) 0 0
\(977\) −653.112 + 653.112i −0.668487 + 0.668487i −0.957366 0.288879i \(-0.906718\pi\)
0.288879 + 0.957366i \(0.406718\pi\)
\(978\) 0 0
\(979\) 1764.65i 1.80250i
\(980\) 0 0
\(981\) −927.278 −0.945238
\(982\) 0 0
\(983\) 777.104 + 777.104i 0.790543 + 0.790543i 0.981582 0.191039i \(-0.0611857\pi\)
−0.191039 + 0.981582i \(0.561186\pi\)
\(984\) 0 0
\(985\) 461.371 + 136.784i 0.468397 + 0.138867i
\(986\) 0 0
\(987\) −1222.65 + 811.326i −1.23875 + 0.822012i
\(988\) 0 0
\(989\) 775.734i 0.784362i
\(990\) 0 0
\(991\) 1560.44i 1.57461i −0.616562 0.787306i \(-0.711475\pi\)
0.616562 0.787306i \(-0.288525\pi\)
\(992\) 0 0
\(993\) −977.185 + 977.185i −0.984074 + 0.984074i
\(994\) 0 0
\(995\) 935.445 507.617i 0.940146 0.510168i
\(996\) 0 0
\(997\) 14.9480 + 14.9480i 0.0149930 + 0.0149930i 0.714564 0.699571i \(-0.246625\pi\)
−0.699571 + 0.714564i \(0.746625\pi\)
\(998\) 0 0
\(999\) 227.144i 0.227371i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.b.223.30 yes 64
4.3 odd 2 inner 560.3.v.b.223.3 64
5.2 odd 4 inner 560.3.v.b.447.29 yes 64
7.6 odd 2 inner 560.3.v.b.223.4 yes 64
20.7 even 4 inner 560.3.v.b.447.4 yes 64
28.27 even 2 inner 560.3.v.b.223.29 yes 64
35.27 even 4 inner 560.3.v.b.447.3 yes 64
140.27 odd 4 inner 560.3.v.b.447.30 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.b.223.3 64 4.3 odd 2 inner
560.3.v.b.223.4 yes 64 7.6 odd 2 inner
560.3.v.b.223.29 yes 64 28.27 even 2 inner
560.3.v.b.223.30 yes 64 1.1 even 1 trivial
560.3.v.b.447.3 yes 64 35.27 even 4 inner
560.3.v.b.447.4 yes 64 20.7 even 4 inner
560.3.v.b.447.29 yes 64 5.2 odd 4 inner
560.3.v.b.447.30 yes 64 140.27 odd 4 inner