Properties

Label 2-55770-1.1-c1-0-53
Degree $2$
Conductor $55770$
Sign $-1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 2·7-s − 8-s + 9-s − 10-s + 11-s − 12-s − 2·14-s − 15-s + 16-s − 2·17-s − 18-s + 20-s − 2·21-s − 22-s + 8·23-s + 24-s + 25-s − 27-s + 2·28-s − 8·29-s + 30-s − 6·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.534·14-s − 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.223·20-s − 0.436·21-s − 0.213·22-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s + 0.377·28-s − 1.48·29-s + 0.182·30-s − 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.80210118272254, −14.24815168921617, −13.53350625029135, −13.06536012936079, −12.61846662728898, −11.95339147496158, −11.30935326252844, −11.10540487597277, −10.73547251516760, −9.858672236046714, −9.645489712795319, −8.807189479088730, −8.681324744198669, −7.789843872375338, −7.356482725821355, −6.651731220698238, −6.460873780952065, −5.357490053297881, −5.295410957216053, −4.575482187916293, −3.675272772440740, −3.125569503025741, −2.016559687999622, −1.753453471637526, −0.9342699372104728, 0, 0.9342699372104728, 1.753453471637526, 2.016559687999622, 3.125569503025741, 3.675272772440740, 4.575482187916293, 5.295410957216053, 5.357490053297881, 6.460873780952065, 6.651731220698238, 7.356482725821355, 7.789843872375338, 8.681324744198669, 8.807189479088730, 9.645489712795319, 9.858672236046714, 10.73547251516760, 11.10540487597277, 11.30935326252844, 11.95339147496158, 12.61846662728898, 13.06536012936079, 13.53350625029135, 14.24815168921617, 14.80210118272254

Graph of the $Z$-function along the critical line