L(s) = 1 | + (−0.960 − 1.03i)2-s + (−0.755 − 0.654i)3-s + (−0.153 + 1.99i)4-s + (0.708 + 0.101i)5-s + (0.0466 + 1.41i)6-s + (−1.58 − 3.47i)7-s + (2.21 − 1.75i)8-s + (0.142 + 0.989i)9-s + (−0.574 − 0.832i)10-s + (−0.408 − 1.39i)11-s + (1.42 − 1.40i)12-s + (5.37 + 2.45i)13-s + (−2.08 + 4.98i)14-s + (−0.468 − 0.540i)15-s + (−3.95 − 0.612i)16-s + (−2.62 + 1.68i)17-s + ⋯ |
L(s) = 1 | + (−0.679 − 0.733i)2-s + (−0.436 − 0.378i)3-s + (−0.0767 + 0.997i)4-s + (0.316 + 0.0455i)5-s + (0.0190 + 0.577i)6-s + (−0.600 − 1.31i)7-s + (0.783 − 0.621i)8-s + (0.0474 + 0.329i)9-s + (−0.181 − 0.263i)10-s + (−0.123 − 0.419i)11-s + (0.410 − 0.406i)12-s + (1.48 + 0.680i)13-s + (−0.556 + 1.33i)14-s + (−0.120 − 0.139i)15-s + (−0.988 − 0.153i)16-s + (−0.637 + 0.409i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 + 0.208i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.978 + 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0660002 - 0.627425i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0660002 - 0.627425i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.960 + 1.03i)T \) |
| 3 | \( 1 + (0.755 + 0.654i)T \) |
| 23 | \( 1 + (4.77 - 0.419i)T \) |
good | 5 | \( 1 + (-0.708 - 0.101i)T + (4.79 + 1.40i)T^{2} \) |
| 7 | \( 1 + (1.58 + 3.47i)T + (-4.58 + 5.29i)T^{2} \) |
| 11 | \( 1 + (0.408 + 1.39i)T + (-9.25 + 5.94i)T^{2} \) |
| 13 | \( 1 + (-5.37 - 2.45i)T + (8.51 + 9.82i)T^{2} \) |
| 17 | \( 1 + (2.62 - 1.68i)T + (7.06 - 15.4i)T^{2} \) |
| 19 | \( 1 + (-4.06 + 6.33i)T + (-7.89 - 17.2i)T^{2} \) |
| 29 | \( 1 + (4.55 + 7.08i)T + (-12.0 + 26.3i)T^{2} \) |
| 31 | \( 1 + (-0.311 - 0.359i)T + (-4.41 + 30.6i)T^{2} \) |
| 37 | \( 1 + (5.60 - 0.805i)T + (35.5 - 10.4i)T^{2} \) |
| 41 | \( 1 + (-1.28 + 8.93i)T + (-39.3 - 11.5i)T^{2} \) |
| 43 | \( 1 + (-2.10 - 1.82i)T + (6.11 + 42.5i)T^{2} \) |
| 47 | \( 1 + 9.11T + 47T^{2} \) |
| 53 | \( 1 + (4.16 - 1.90i)T + (34.7 - 40.0i)T^{2} \) |
| 59 | \( 1 + (-1.26 - 0.578i)T + (38.6 + 44.5i)T^{2} \) |
| 61 | \( 1 + (-3.93 + 3.40i)T + (8.68 - 60.3i)T^{2} \) |
| 67 | \( 1 + (3.26 - 11.1i)T + (-56.3 - 36.2i)T^{2} \) |
| 71 | \( 1 + (13.1 + 3.87i)T + (59.7 + 38.3i)T^{2} \) |
| 73 | \( 1 + (-7.18 - 4.61i)T + (30.3 + 66.4i)T^{2} \) |
| 79 | \( 1 + (-5.49 + 12.0i)T + (-51.7 - 59.7i)T^{2} \) |
| 83 | \( 1 + (-11.5 + 1.66i)T + (79.6 - 23.3i)T^{2} \) |
| 89 | \( 1 + (3.74 - 4.32i)T + (-12.6 - 88.0i)T^{2} \) |
| 97 | \( 1 + (-1.61 + 11.2i)T + (-93.0 - 27.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46587666552693352991805475432, −9.656181010207931663167951665996, −8.756487655313481717407807513384, −7.71069005500912156902926022919, −6.86450502988614022974891426229, −6.03678824028460977196948943203, −4.30390625349304739032279791277, −3.47759027893010463865026495911, −1.86997823145931357105961466432, −0.48325556051793370663464955103,
1.74444876279046779600752306198, 3.50306129262704672306113949240, 5.15771380718167890523612658009, 5.85160877181583016680744413817, 6.39049825658236001954228346842, 7.75277528770764561387934997270, 8.636179067296837636610368096504, 9.446903005763003610269604867016, 10.02911036791188561004282092477, 10.98810662168012556711260965078