Properties

Label 2-552-184.101-c1-0-10
Degree $2$
Conductor $552$
Sign $-0.978 - 0.208i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.960 + 1.03i)2-s + (−0.755 + 0.654i)3-s + (−0.153 − 1.99i)4-s + (0.708 − 0.101i)5-s + (0.0466 − 1.41i)6-s + (−1.58 + 3.47i)7-s + (2.21 + 1.75i)8-s + (0.142 − 0.989i)9-s + (−0.574 + 0.832i)10-s + (−0.408 + 1.39i)11-s + (1.42 + 1.40i)12-s + (5.37 − 2.45i)13-s + (−2.08 − 4.98i)14-s + (−0.468 + 0.540i)15-s + (−3.95 + 0.612i)16-s + (−2.62 − 1.68i)17-s + ⋯
L(s)  = 1  + (−0.679 + 0.733i)2-s + (−0.436 + 0.378i)3-s + (−0.0767 − 0.997i)4-s + (0.316 − 0.0455i)5-s + (0.0190 − 0.577i)6-s + (−0.600 + 1.31i)7-s + (0.783 + 0.621i)8-s + (0.0474 − 0.329i)9-s + (−0.181 + 0.263i)10-s + (−0.123 + 0.419i)11-s + (0.410 + 0.406i)12-s + (1.48 − 0.680i)13-s + (−0.556 − 1.33i)14-s + (−0.120 + 0.139i)15-s + (−0.988 + 0.153i)16-s + (−0.637 − 0.409i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.208i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.978 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $-0.978 - 0.208i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ -0.978 - 0.208i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0660002 + 0.627425i\)
\(L(\frac12)\) \(\approx\) \(0.0660002 + 0.627425i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.960 - 1.03i)T \)
3 \( 1 + (0.755 - 0.654i)T \)
23 \( 1 + (4.77 + 0.419i)T \)
good5 \( 1 + (-0.708 + 0.101i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (1.58 - 3.47i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (0.408 - 1.39i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (-5.37 + 2.45i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (2.62 + 1.68i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (-4.06 - 6.33i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (4.55 - 7.08i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (-0.311 + 0.359i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (5.60 + 0.805i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (-1.28 - 8.93i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (-2.10 + 1.82i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 + 9.11T + 47T^{2} \)
53 \( 1 + (4.16 + 1.90i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (-1.26 + 0.578i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (-3.93 - 3.40i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (3.26 + 11.1i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (13.1 - 3.87i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-7.18 + 4.61i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (-5.49 - 12.0i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (-11.5 - 1.66i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (3.74 + 4.32i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (-1.61 - 11.2i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98810662168012556711260965078, −10.02911036791188561004282092477, −9.446903005763003610269604867016, −8.636179067296837636610368096504, −7.75277528770764561387934997270, −6.39049825658236001954228346842, −5.85160877181583016680744413817, −5.15771380718167890523612658009, −3.50306129262704672306113949240, −1.74444876279046779600752306198, 0.48325556051793370663464955103, 1.86997823145931357105961466432, 3.47759027893010463865026495911, 4.30390625349304739032279791277, 6.03678824028460977196948943203, 6.86450502988614022974891426229, 7.71069005500912156902926022919, 8.756487655313481717407807513384, 9.656181010207931663167951665996, 10.46587666552693352991805475432

Graph of the $Z$-function along the critical line